
RISE: Real-Time Iteration Scheme for Estimation
applied to Visual-Inertial Odometry

Philipp Foehn, Davide Scaramuzza

Abstract—Real-time state estimation is the cornerstone for
autonomous mobile robots, with visual-inertial odometry being
the prominent solution for size and weight constrained platforms.
Being based on maximum-likelihood Bayesian-inference through
optimization, such estimators use complex non-linear (e.g. visual
and inertial) measurement modalities, which are computationally
intense. To render the problem computationally tractable on
constrained platforms, approximations along two dimensions are
applied: (i) measurement sparsification through extraction of
visual features and preintegrated inertial measurements, and (ii)
temporal sparsification through marginalization up to a sliding-
window of measurements, or even up to the latest measurement
in the extreme case of a filter-based approach. We propose to
use a further approximation exploiting the iterative convergence
and similarity of subsequent sliding windows, where most of
the optimization variables are already close to optimal or
accurately initialized. Our proposed method differs from existing
approaches by utilizing each iteration result as successively re-
fined state estimate without waiting for convergence, resulting in
a real-time iteration scheme for estimation (RISE). This enables
three main advantages: (i) reaction latency to new observations is
drastically reduced, (ii) the provided estimates are as accurate as
possible given the computation budget, (iii) measurements can be
incorporated at high frequency without waiting for convergence.
In the context of a VIO pipeline, our preliminary results show an
average RMSE reduction of 20%, while reducing the latency by
roughly a factor of 10x, allowing more than 100fps throughput.

I. INTRODUCTION

State estimation is the cornerstone for autonomous mobile
robots such as drones, which often underlie size, weight, cost,
and environmental constraints, necessitating small, indepen-
dent sense and compute solutions.

Meanwhile, visual-inertial odometry (VIO) has become
the state-of-the-art onboard localization solution for mobile
robots, enabled by its complementary measurement nature, and
attributed to its size, weight, and cost-effectiveness. However,
the problem of fusing these two measurement modalities is
highly non-linear and requires a considerable amount of com-
putational resources, which mobile (aerial) platforms struggle
to deliver [1].

To deploy such Bayesian methods efficiently on size and
weight constrained mobile robots, many approaches make
severe simplifications. In the context of VIO pipelines, these
simplifications mainly come in two flavors: (i) measurement
sparsification, such as the compression of visual images into
feature tracks or the preintegration of IMU measurements,
and (ii) temporal sparsification reducing global problems into
sliding-window formulations through marginalization. In the
extreme case of marginalizing down to single state-pairs, one
arrives at filter-based formulations such as the MSCKF[2],

Fig. 1: Visualized comparison of a typical solver iterating up
to convergence introducing latency x̂conv , and our proposed
RISE method x̂rise. Note that in the case of solving up to con-
vergence, a new estimate becomes available with significant
latency, while RISE provides updated estimates at high rates,
iteratively converging towards zero error.

which are computationally lean and efficient. However, span-
ning a sliding-window over multiple measurement periods of-
ten enhances robustness, accuracy, and versatility in describing
complex non-linear measurement modalities. This lead to the
popular field of sliding-window VIO algorithms, such as [3, 4],
and frameworks for modelling such problems, like [5, 6].

Unfortunately, optimization-based sliding-window
approaches for VIO quickly outgrow real-time applicability
by their computational requirements. In fact, there is large
disconnect between the optimization, typically reaching
around 30 fps on modern mobile compute architectures [1],
and the possible sensor rates which easily exceed 100 fps
for cameras and 1 kHz for IMUs. Especially under Gaussian
noise assumptions, higher measurement frequency allows
for better noise suppression and overall better estimation
performance.

On the other hand, many real-time capable approaches often
deploy KLT tracking [7], which benefits from higher frame
rates, due to the lower apparent motion. To take full advantage
of this, the sliding-window optimization needs to be capable
to process the high rate feature tracks, e.g. given by [8].

Interestingly, in the field of model predictive control (MPC),
similar problems are met when computing optimal control
inputs. State-of-the-art approaches to optimization-based MPC
apply a real-time iteration scheme [9], updating control inputs
and initial state between each iteration, instead of only after
convergence. The intention behind this scheme is that the
iterations converge faster than the systems states change,
where the problems contractivity can be proven [9].

We propose to use a similar scheme for non-linear
optimization-based estimation, where we exploit the fact that



each new measurement only changes a subset of the states
and residuals in a sliding window. Therefore, successive win-
dows are similar, and given an initial guess for the changed
subsets, iterations can converge extremely fast. Furthermore,
each iteration can be verified by checking the reduction in
the quadratic cost, allowing to reject unsuccessful iterations.
Finally, this enables the retrieval of refined estimates after each
iteration, and updating the window with new measurements as
soon as they arrive, rather than after convergence. In contrast
to filter-based method, it does neither require measurements to
be added in temporal order, nor fix the linearization point of
measurements within the sliding window, and allows multiple
concurrent measurement residuals over temporally distributed
states (the sliding-window) to be optimized simultaneously. In
contrast to existing optimization-based methods, the real-time
iteration scheme drastically reduces observation-to-reaction
latency and enables incrementally adding new measurements
as they arrive, without having to batch multiple measurements
that are held up by waiting for convergence. The later point
minimizes the subset of exchanged state variables in a sliding-
window, resulting in good initialization and fast convergence.

Our real-time iteration scheme for estimation (RISE) en-
ables three main advantages:

1) reduced reaction latency to new observations,
2) the provided estimates are as accurate as possible given

the computation budget,
3) measurements can be incorporated at high frequency

without waiting for convergence.
Our preliminary experiments indicate the effectiveness of

this approach by reducing the positional tracking RMSE by
20% over up-to-convergence solving, reducing latency by a
factor of 10×, and allowing to incorporate frame measure-
ments at up 100fps.

II. METHODOLOGY

A. Nomenclature

We write scalars as s, vectors as v and matrices as M .
We denote the inertial frame by I , body frame B, and camera
frame C. To write the translation from frame B to C expressed
in I we use ItBC , while a rotation matrix RBC = R(qBC)
accompanies its quaternion description qBC . Additionally, for
the quaternion conjugate we use q̄, so that R−1(q) = R(q̄).
For readability, a quantity expressed in its origin frame drops
the first frame index pIB = IpIB , and relations between
inertial and body frame drop all indices, as in p = IpIB .

B. Visual-Inertial Estimation as Non-Linear Optimization

The VIO problem in its basic description can be summarized
as finding the optimal state x∗ that minimizes a weighted
quadratic cost χ2 = ‖e(x)‖2W with weight matrix W on the
residuals e(x) = y(x)− ŷ, where ŷ is the measurement:

x∗ = min
x
χ2(e(x)) = min

x
‖e(x)‖2W (1)

which is equal to the maximum a posterior estimate when
weighted with the inverse covariance W = Σ−1 under
Gaussian noise assumptions.

In the context of VIO, the residuals are typically comprised
of visual factors eV , inertial factors eI , and prior factors eP ,
so that we can rewrite the problem as

x∗ = min
x
eᵀPW PeP + eᵀVW V eV + eᵀIW IeI (2)

In the following sections we introduce the state space descrip-
tions and all residual formulations.

1) State Space: To formulate the VIO sliding window
problem, we first define the the IMU state at time ti as

xi =
[
pi, qi,vi, bai, bωi

]
(3)

with the position pi, orientation qi, velocity vi and ac-
celerometer and gyroscope bias bai and bωi. The orientation
is further decomposed by qIB = qIR ∗ qRB where R is
a local reference frame. Therefore, we can use a minimal
quaternion representation qRB =

[√
1− qᵀxqx, qᵀx

]ᵀ
with

qx ∈ R3 and linearize the state by qIR ⇐= qIR · qRB and
qRB ⇐=

[
1 0

]ᵀ
.

Together with the visual features parameterized by their
position lj ∈ R3, the full state space x becomes

x = [x0, ...,xN−1, l0, . . . , lM−1] (4)

with a sliding window of N states and M features.
2) Projection Measurements: The camera is described by a

pinhole model characterized by projection matrix K, and the
camera to body transformation tBC , qBC . The projection of
a feature l into image coordinates s follows as

s =

[
1/tCLz 0 0

0 1/tCLz 0

]
·K · tCL

tCL = R−1BC(R−1IB(l− pIB)− tBC)
(5)

with tCL the landmark location in camera frame, and tCLz
its depth. We can then write the measurement residual for an
observation ŝij of feature j at state i as eij = sij − ŝij .

3) Preintegrated IMU Measurements: The acceleration and
gyroscope measurements â, ω̂ are assumed to be biased by ba,
bg and corrupted by zero-mean Gaussian noise η ∼ N (0, σ),
as

â = a+ ba − g + ηa ḃa = ηba

ω̂ = ω + bω + ηω ḃω = ηbω
(6)

where the biases ba, bω follow a random walk, and gravity is
g =

[
0 0 −9.81m/s2

]ᵀ
.

To reduce many IMU samples into one measurement resid-
ual between two camera frames i, i + 1 and their respective
states xi,xi+1, we perform IMU preintegration. Multiple IMU
samples are collected in factors on position αi, velocity βi,
and orientation γi, as relative motion constraints expressed in
the bodyframe Bi of state xi. This avoids repeated integration
of the IMU measurements, and can be precomputed by

k+1αi = kαi + δt · kβi + δt2/2 ·R(kγi)(âi − ba)

k+1βi = kβi + δtR(kγi)(âk − bai) (7)

k+1γi = kγi ·
[

1
δt
2 (ω̂k − bgi)

]



with the accelerometer and gyroscope measurements âk, ω̂k
respectively, at time tk and with δt = tk− tk−1, initialized as
0αi = 0, 0βi = 0, and 0γi =

[
1 0 0 0

]ᵀ
.

The measurement residual between state i and i + 1 can
now be written as

ei =


R−1IBi

(
pi+1 − pi − δt · vi − δt2/2 · g

)
− iα

R−1IBi (vi+1 − vi − δt · g)− iβ
2
[
q̄i · qi+1 · iγ̄

]
xyz

bai+1 − bai
bωi+1 − bωi

 (8)

where the first three terms correspond to the relative position
residual using α, velocity residual using β, orientation residual
using γ, and the last two terms are the constant-expectation
of the random-walk biases.

4) Prior Residual and Marginalization: When a new frame
arrives we either decide to replace the latest frame or shift the
latest frame to add it as a new keyframe in the window. Adding
new frames in a fixed size sliding window estimator requires
marginalizing the oldest state xm = x0, and representing its
information in the form of a prior residual on states it is related
to i.e. xr = [x1, l0, . . . , lM−1]. To eliminate x0, we employ
the Schur complement on a sub-system of factors connected
to xm:

Aprior∆xr = bprior (9)

where Aprior =
(
Arr −ArmA−1mmAmr

)
(10)

bprior = br −ArmA−1mmbm (11)

where Aij = JTi WJj and bi = JTi We involve jacobians
with respect to states i and j and the indices m and r stand for
the marginalized and related states, respectively. The resulting
prior residual on xr is formulated as:

eprior = ∆xr −A−1priorbprior Wprior = Aprior (12)

where ∆xr is the deviation of the state xr from its estimate
xr0 at the time of marginalization. In our implementation,
we maintain sparsity of our problem by dropping priors on
features and only keep the prior on x1.

5) Feature Track Selection: The given formulation of the
VIO problem is implemented most efficiently when an upper
limit on the state and residual size can be set. This implies that
the sliding window length and the number of feature tracks is
limited, requiring to select a subset A of active tracks to use
as residuals, and a passive (larger) subset P to consider as
replacements if tracks in A become obsolete. However, track
selection has to be done carefully, to guarantee (i) a good
distribution of tracks throughout the window, (ii) a minimum
number of observations per frame, and (iii) no disconnect
between states in the window. Many pipelines apply heuristics
for this track selection, which need to be tuned to or just
require a massive number of features tracks to have a high
probability of good problem conditioning. We employ a simple
scheme to compare weighted lengths of feature tracks, and
maximize them throughout the sliding window.

Let T ∈ {0, 1}M×N be a binary matrix of size M×N with
M the number of tracks and N the number of sliding window
states. Each entry of TA (for the MA active tracks) and TP
(for the MP passive tracks) indicates whether a feature at e.g.
TAij ∈ {0, 1} is set or not. Thanks to the matrix notation,
we can now compute the length ζ ∈ RM of all feature tracks
as ζ = T1. However, this weights all entries by the vector
of ones 1 ∈ RN , whereas it is desirable to have an uneven
weighting over the sliding window, defined by the weight
vector wζ ∈ RN as

wζi = ηi ∀i ∈ [0, N) (13)
ζA = TAwζ ζB = T Bwζ (14)

with η ∈ (0.5, 2) a tuning parameter, where η = 1 is uniform
weight, η = 2 prioritizes recent tracks, and η = 0.5 prioritizes
older tracks.

We compute ζA and ζP and then form the matrix of their
element-wise difference δζ ∈ RMA×MP , as

δζij = ζPj − ζAi ∀i ∈ [0,MA), j ∈ [0,MP) (15)

where the elements δζij intuitively represent the change in
weighted track length, if an active feature i is exchanged
with passive feature j. We can now simply search for the
biggest elements in δζ which correspond to the best replace
candidates, maximizing the weighted track lengths.

C. Non-Linear Least-Squares Optimization

To minimize the cost χ2(e(xk)) and find the optimal value
x∗k of the estimation problem at time tk, we use a Levenberg-
Marquardt solver, which compromises between gradient de-
scent and the Gauss-Newton method. We iterate over ixk with
iteration counter i by i+1xk = ixk + ihk, where ihk is the
update step according to

(JᵀWJ + λ · diag(JᵀWJ))h = JᵀW (y(x)− ŷ) (16)

with the Jacobian J = ∂y(x)
∂x and measurements ŷ, where the

indices k and i have been dropped for readability. Note that
for large values of iλ, the update step approximates a gradient
descent, and for small iλ a Gauss-Newton step. Eqn. (16) is
repeated until the update step falls below a certain magnitude
‖ihk‖ < εh or the change in δiχ2

k < εχ becomes small enough
and the optimal solution is declared to be x∗k = iFxk of the
final iteration iF .

While iterating, iλ is refined by some heuristics, often
chosen by lowering i+1λ = αl

iλ by a factor αl when the
update step was successful with i+1χ2

k <
iχ2
k, and otherwise

increasing i+1λ = αu
iλ by a factor αu.

In most real-time estimation problems, the iterations run
until the convergence criteria is met, only after which a
new estimate x∗k = iFxk becomes available. Note that the
computational latency δctk = F

c tk−0
ctk between the time when

the optimization for x∗k is started at 0
ctk and the final solution

is available at Fc tk is the cumulative computation time for all
iterations δctk =

∑iF
i=0

i
ctk. Consequently, all information (i.e.

feature tracks) received in the period [0ctk,
F
c tk) is incorporated



in batch after Fc tk, and the solution process is restarted with
the latest solution serving as the initial guess 0xk+1 = iFxk.

When considering consecutive optimization of a problem
where the unknown variables change, e.g. when adding a new
frame, sliding the window, or adding new feature tracks, only a
subset of the optimization variables can be initialized from the
previous solution. This becomes prominent when adding data
in batch, which typically is the case when the optimization
takes longer than the measurement frequency, where many
variables are left without or only with an approximate initial
guess.

Such a deteriorate initial guess typically leads to requiring
more iterations F ik+1 in the next solution process, and reduces
convergence rates and robustness due to poor linearization.

D. Real-Time Iteration Scheme for Estimation

To address the aforementioned problems and increase the
real-time capabilities of sliding window estimators, we pro-
pose the adaption of the real-time iteration scheme [9], known
from the field of model-predictive control. This scheme is in-
tuitively based on the fact that in many optimization problems
on real-time systems two consecutive problems are similar and
a (large) subset of the variables is optimally constant or can be
initialized close to their optimum. In the context of a sliding-
window estimator for VIO, this holds well since:
• when adding visual measurements, a frame is inserted or

replacing the head state (xN−1), which can be initialized
using IMU propagation from the last available estimate,

• when marginalizing the last state, remaining states are
unaffected,

• when exchanging landmarks lj , an initial guess can be
computed through triangulation, if at least two corre-
sponding camera poses have been estimated before.

However, all of these points become poor approximations if
data is added in batch, exchanging multiple states of the sliding
window at once and degrading the initial guess for those states.
On the other hand, when deploying the real-time iteration
scheme, rather than waiting for δctk until convergence, we
retrieve the incrementally improved estimate ixk after the
much smaller single-iteration latency δictk << δctk, and
already incorporate measurements.

Furthermore, an iteration is only accepted if it reduces the
square error χ2(e(x)), therefore guaranteeing improvement
over the previous estimate.

Finally, processing higher measurement rates implies a
reduction in the difference between the optimal solution of
two consecutive problem windows, facilitating linearization
and initialization quality of the optimization.

III. EXPERIMENTS

All experiments are performed on a Jetson TX2, to keep
a deployment-ready experiment environment and demonstrate
the advantages of RISE on a computationally constrained
platform. Both RISE and the baseline are implemented using
our RISE framework, where the only change between the base-
line Solver configuration and the proposed RISE configuration

is that Solver iterates until convergence, while RISE allows
adding and retrieving data between iterations.

Since our proposed method only considers the backend op-
timization and not the frontend including feature tracking and
other data processing, we base our experiments on simulated
feature tracks and IMU data (described in III-A), to exclude
any other effect that might affect our evaluation.

We first describe our data generation process, then compare
RISE and Solver with equal data rates and configuration.
Finally, we demonstrate improved performance of RISE in
two steps: first, by increasing the frame rate, and second by
increasing the sliding window-size and and feature track count.

A. Evaluation Data Generation

To evaluate our framework, we generate data a priori. We
describe trajectories as 7th-order polynomials in position and
compute a sequence of them through multiple waypoints,
either arranged in a Figure-8 or randomly distributed on 3 m
intervals, see Fig. 2. Additionally, we vary the trajectory
speed and add an overlaid rotation around all axes, which
is also represented by the same polynomial formulation and
uniformly sampled in (θmin, θmax)

To generate IMU measurements â and ω̂, sample the trajec-
tory at 1 kHz and add a random walk bias and Gaussian noise
according to Eq. (6). For the feature tracks, we project features
according to Eq. 5, add Gaussian noise and round the values
to full integer numbers, since many feature trackers do not
allow for sub-pixel accurate tracking. To create features, we
uniformly sample a random image coordinate s and a uniform
depth z ∈ (zmin, zmax), compute the feature location, and
reproject it in subsequent frames. In reality, features (or other
landmarks) are frequently occluded, lost due to appearance
changes, and newly detected on the image border that reveals
new scenery (along the motion vector). Therefore, we drop
randomly picked features with a probability pdrop in every
frame, and add new features with a probability pborder within
the image border of width wborder facing the motion direction,
and with probability 1 − pborder in the inner image region.
The whole process is performed at 300 Hz, from which only a
subset is used at test time, to reflect varying frame rates such
as 30 fps and 100 fps used in our tests. Therefore, the feature-
drop probability pdrop accumulates dropouts over multiple
frames when using frame rates below the nominal 300 fps.
This corresponds roughly to the effects on a real system,

Trajectory Figure-8 Figure-8 Random
Noise level medium high medium

σa [m/s2] 0.2 0.4 0.2
σω [rad s−1] 0.02 0.04 0.02
σba [m/s2] 2e−4 2e−4 2e−4
σbω [rad s−1] 2e−4 2e−4 2e−4
σproj [pixel] 0.2 0.4 0.2
pdrop [%] 1% 1% 1%
vmax [m s−1] [2, 5, 8, 15] [2, 5, 8, 15] [2, 5, 8, 15]

TABLE I: Trajectory generation parameters, with noise as
standard deviation



(a) Figure-8

x [m]

0
2

4
6

8
10

y [m]
4

2024681012

z [m
]

1
2
3
4
5
6
7
8
9

(b) Random-2

x [m]18 16 14 12 10 8 6 4

y [m
]

10

5

0

5

10

z [m
]

10
8
6
4
2

0
2
4

(c) Random-1

x [m]

10
8

6
4

2
0y [m]

2.5
0.0

2.5
5.0

7.5
10.0

12.5
15.0

z [m
]

12

10

8

6

4

2

Fig. 2: Generated trajectories

TABLE II: Comparison of RISE agains baseline Solver in RMSE normalized by trajectory length

Algorithm RISE 10/60 @100fps RISE 8/40 @100fps RISE 8/40 @30fps Solver 8/40 @30fps
RMS Error over trajectory length pos [%] rot [◦/m] pos [%] rot [◦/m] pos [%] rot [◦/m] pos [%] rot [◦/m]

Fig-8 2m s−1 medium noise 0.81 0.02 0.63 0.02 0.65 0.03 0.85 0.03

Fig-8 2m s−1 high noise 0.75 0.03 0.92 0.04 0.77 0.04 0.94 0.05

Fig-8 5m s−1 medium noise 0.25 0.02 0.39 0.03 0.44 0.03 0.39 0.03

Fig-8 5m s−1 high noise 0.27 0.02 0.48 0.04 0.56 0.04 0.56 0.04

Fig-8 8m s−1 medium noise 0.38 0.03 0.34 0.03 0.41 0.02 0.39 0.02

Fig-8 8m s−1 high noise 0.44 0.03 0.49 0.03 0.52 0.04 0.69 0.05

Fig-8 15m s−1 medium noise 0.50 0.04 0.55 0.04 0.53 0.04 0.58 0.04

Fig-8 15m s−1 high noise 0.54 0.04 0.65 0.04 24.86 1.16 27.86 1.13

Random 1 2m s−1 medium noise 0.33 0.02 0.49 0.02 0.40 0.02 0.41 0.03

Random 1 5m s−1 medium noise 0.20 0.01 0.32 0.02 0.40 0.02 0.33 0.02

Random 1 8m s−1 medium noise 0.29 0.02 0.33 0.02 0.33 0.02 0.34 0.02

Random 1 15m s−1 medium noise 0.44 0.03 0.41 0.03 0.53 0.02 0.54 0.03

Random 2 2m s−1 medium noise 1.09 0.02 1.22 0.02 1.00 0.03 1.05 0.03

Random 2 5m s−1 medium noise 0.24 0.02 0.36 0.02 0.40 0.03 0.42 0.03

Random 2 8m s−1 medium noise 0.22 0.01 0.31 0.02 0.28 0.02 0.31 0.02

Random 2 15m s−1 medium noise 0.35 0.02 0.46 0.03 0.49 0.02 0.50 0.02

Random 3 2m s−1 medium noise 1.17 0.02 0.96 0.02 0.70 0.03 1.07 0.03

Random 3 5m s−1 medium noise 0.29 0.02 0.30 0.02 0.31 0.02 0.27 0.02

Random 3 8m s−1 medium noise 0.24 0.02 0.29 0.02 0.33 0.02 0.44 0.02

Random 3 15m s−1 medium noise 0.50 0.03 0.44 0.03 2.31 0.10 2.49 0.11

where at low frame rates larger displacements and appearance
changes between two frames lead to more frequent feature
track loss. The camera is parameterized with VGA resolution
640× 480 at a horizontal field of view of 120°. Features are
generated at the image border of width wborder = 32 pixel
with a probability of pborder = 25%. All other parameters can
be found in Tab. I.

B. Comparison between RISE and Solver

To establish a baseline, we first execute the Solver configu-
ration, running up to convergence but limited to 10 iterations,
similar to many real-world applications. We then run the same
setup, but with our RISE configuration, iterating continuously
and reporting each intermediate estimate. Both setups use
a sliding window over 8 states and 40 features (indicated
by ”8/40”), equal noise variance and parameters, and are
provided with 30 fps visual feature tracks and 300 Hz IMU
measurements. The results of both runs on multiple trajectories
are depicted in Table II (two rightmost columns), indicating
a slight improvement in positional RMSE, for the RISE

configuration, with mostly equal rotational RMSE. In general,
the highest errors occur at low speed with high noise values,
where the signal-to-noise ration of the IMU measurements
is the worst. Note that one configurations on the Figure-8
trajectory at the highest tested speed of 15 m s−1 led to a loss
of tracking for both RISE and Solver.

However, Table III shows a clear advantage in terms of
latency, where the first updated estimate can be retrieved
within < 4 ms for the RISE 8/40 configuration. Meanwhile,
the Solver configuration is mostly capped by the iteration limit
after 10 converging steps, increasing the latency to > 30 ms.

TABLE III: Latency Comparison

Timing mean [ms] std [ms2] min [ms] min [ms]

Solver 8/40 31.7 4.77 12.9 53.6
RISE 8/40 3.47 0.842 1.55 5.81
RISE 10/60 6.34 3.01 2.16 9.98



C. Extended Capabilities of RISE

Given the reduced latency of RISE and it’s capability to
keep up well with the 30 fps in our baseline comparison,
we can now increase the measurement frequency and the
problem complexity by spanning larger windows an more
feature tracks, expecting improved performance as reduced
RMSE when doing so.

We first change the measurement rate to provide 100 fps
feature tracks (and 300 Hz IMU) and report the results in Table
II (second column), indicating a slight further reduction in
RMSE on both position and rotation, and removes the failure
case on the Figure-8 at 15 m s−1.

Lastly we increase the problem convexity by expanding to a
sliding window over 10 states and 60 feature tracks (indicated
as ”10/60”), reported in Table II (first column). This further
reduces the RMSE, leading to an overall error reduction of
∼ 20%. However, this also increases the latency to roughly
∼ 6 ms as reported in Table III.

IV. CONCLUSION

We proposed the novel adaption of the real-time iteration
scheme for estimation, motivated by the iterative convergence
of the maximum-a-posteriori solution of a Bayesian estimation
problem. Our work only serves as a proof of concept, and
does not yet deploy the approach on real-world systems and
data, neither provides contractivity guarantees for the iterative
refined estimate. However, preliminary results indicate that
it can be deployed on visual-inertial odometry and increase
accuracy, latency, and data throughput.

REFERENCES

[1] J. Delmerico and D. Scaramuzza, “A benchmark compar-
ison of monocular visual-inertial odometry algorithms for
flying robots,” in IEEE Int. Conf. Robot. Autom. (ICRA),
2018.

[2] A. I. Mourikis and S. I. Roumeliotis, “A multi-state con-
straint Kalman filter for vision-aided inertial navigation,”
in IEEE Int. Conf. Robot. Autom. (ICRA), 2007, pp. 3565–
3572.

[3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. Furgale, “Keyframe-based visual-inertial SLAM using
nonlinear optimization,” Int. J. Robot. Research, 2015.

[4] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and
versatile monocular visual-inertial state estimator,” IEEE
Trans. Robot., vol. 34, no. 4, pp. 1004–1020, 2018.

[5] F. Dellaert, “Factor graphs and GTSAM: A hands-on
introduction,” Georgia Institute of Technology, Tech. Rep.
GT-RIM-CP&R-2012-002, Sep. 2012.

[6] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard,
and F. Dellaert, “iSAM2: Incremental smoothing and
mapping using the Bayes tree,” Int. J. Robot. Research,
vol. 31, no. 2, pp. 217–236, Feb. 2012.

[7] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A
unifying framework,” Int. J. Comput. Vis., vol. 56, no. 3,
pp. 221–255, 2004.

[8] B. Nagy, P. Foehn, and D. Scaramuzza, “Faster than fast:
Gpu-accelerated frontend for high-speed vio,” 2020.

[9] M. Diehl, H. Bock, and J. Schlöder, “A real-time iteration
scheme for nonlinear optimization in optimal feedback
control,” SIAM J. on Control and Optimization, 2005.


