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Abstract— Adding more cameras to SLAM systems improves
robustness and accuracy but complicates the design of the visual
front-end significantly. Thus, most systems in the literature are
tailored for specific camera configurations. In this work, we
aim at an adaptive SLAM system that works for arbitrary
multi-camera setups. To this end, we revisit several common
building blocks in visual SLAM. In particular, we propose an
adaptive initialization scheme, a sensor-agnostic, information-
theoretic keyframe selection algorithm, and a scalable voxel-
based map. These techniques make little assumption about
the actual camera setups and prefer theoretically grounded
methods over heuristics. We adapt a state-of-the-art visual-
inertial odometry with these modifications, and experimental
results show that the modified pipeline can adapt to a wide
range of camera setups (e.g., 2 to 6 cameras in one experiment)
without the need of sensor-specific modifications or tuning.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/JGL4H93BiNw

I. INTRODUCTION

As an important building block in robotics, visual(-inertial)
odometry (VO/VIO), or more general, simultaneous local-
ization and mapping (SLAM) has received high research
interest. Modern SLAM systems are able to estimate the
local motion accurately as well as build a consistent map
for other applications. One of the remaining challenges for
vision-based systems is the lack of robustness in challeng-
ing environments, such as high dynamic range (HDR) and
motion blur [1]. Among different approaches that have been
explored for better robustness (e.g., [2] [3]), adding more
cameras in SLAM systems proves to be effective and is
already exploited in successful commercial products, such
as Oculus Quest [4] and Skydio [5].

As the workhorse for modern (keyframe-based) SLAM
systems, bundle adjustment (BA) like nonlinear optimization
naturally generalizes to multiple sensors, including visual-
inertial and multi-camera systems, as long as the measure-
ment process is modeled correctly. On the other hand, the
design of the so-called front-ends is much less theoretically
grounded. Many details, such as initialization, keyframe
selection, and map management, are designed heuristically.
Moreover, such designs are often tailored to specific sensor
setups, and it is not clear to what extent they can be
applied to more general sensor configurations. For example,
one popular method for selecting keyframes is to consider
commonly visible features in the current frame with respect
to the last keyframe. While this works well for monocular
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Fig. 1: Multi-camera systems achieve superior performance in perception
algorithms and are widely used in real-world applications, such as omni-
directional mapping [6], autonomous drones [5], and VR headsets [4]. To
facilitate the use of such systems in SLAM, we propose several generic
designs that adapt to arbitray multi-camera systems automatically.

setups or stereo pairs with highly overlapping field-of-views
(FoV), it quickly becomes complicated as more cameras are
added, as different cameras may have drastically different
view conditions (e.g., the number of features).

To remove the dependence on sensor-specific assumptions
and heuristics, we resort to adaptive and more principled so-
lutions. First, instead of using hard-coded rules, we propose
an adaptive initialization scheme that analyzes the geometric
relation among all cameras and selects the most suitable
initialization method online. Second, instead of engineering
heuristics, we choose to characterize the uncertainty of the
current pose estimate with respect to the local map using
the information from all cameras, and use it as an indicator
of the need for a new keyframe. Third, instead of relying
on the covisiblity graph, we organize all the landmarks in a
voxel grid and sample the camera frustums via an efficient
voxel hashing algorithm, which directly gives the landmarks
within the FoVs of the cameras. These methods generalize
well to arbitrary camera setups without compromising the
performance for more standard configurations (e.g., stereo).
Contributions: To summarize, the contribution of this work
is an adaptive design for general synchronous multi-camera
VO/VIO/SLAM systems, including

• an adaptive initialization scheme,
• a sensor-agnostic, information-theoretic keyframe selec-

tion algorithm,
• a scalable, voxel-based map management method.

Since the proposed method is not limited to specific im-
plementations or sensing modalities, we will use the term
SLAM in general for the rest of the paper.

The paper is structured as follows. In Section II, we review
the common methods for initialization, keyframe selection,
and map management in visual SLAM. In Section III, we
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describe our adaptive initialization process based on overlap
check. In Section IV, we detail our entropy-based keyframe
selection algorithm. In Section V, we introduce our voxel-
based map representation for visible points retrieval. Finally,
we apply our method to a state-of-the-art VIO system and
present the experimental results in Section VI and conclude
our work in Section VII.

II. RELATED WORK

A. Initialization

The initialization in SLAM typically incorporates as-
sumptions that are specific to camera configurations. For
monocular systems, homography and 5-point relative pose
algorithm from [7] are popular ways to obtain the poses of
the first two keyframes and the initial map (e.g., [8]), which
usually requires the camera to undergo certain motion, such
as strong translation and no pure rotation. In contrast, stereo
cameras can recover the depth information and initialize the
map directly [9], [10]. In multi-camera setups, there could
be various ways of combining different cameras depending
on the extrinsic parameters. For example, MCPTAM [11]
initializes the monocular cameras individually with a known
target. The pipeline in Liu et al. [12] performs initialization
with stereo matching from predefined stereo pairs. While the
possible ways for initialization inevitably depend on sensor
configurations, we would like a system to be able to select
the proper method automatically, instead of hard-coded rules.

B. Keyframe Selection

It is common to maintain a fixed number of keyframes in
the front-end as the local map, against which new frames
are localized. Hence, the selection of keyframes is crucial
for the performance of SLAM systems. In general, the
keyframe selection criteria can be categorized into heuristic-
based methods and information-theoretic methods.

1) Heuristics-based methods: In many SLAM systems,
the keyframe selection criteria are the combinations of dif-
ferent heuristics. We list the most common ones below.
Camera motion: In ORB-SLAM [8], one of the criteria is
to check whether the current frame is a certain number of
frames away from the last keyframe. Similarly, DSO [13]
and SVO [10] select a new keyframe if the current pose is
away from the last keyframe by a certain amount of motion.
Number of tracked features: A new keyframe is selected
if the number or the percentage of tracked features in the
current frame falls below a certain threshold. However, the
specific threshold usually varies greatly between different
scenarios. This criterion in used in [8], [10], [11], and [14].
Optical flow: The Euclidean norm between the correspond-
ing features from the current frame and the last keyframe.
This criterion, for example, is used in [13] and [12].
Brightness change: For direct methods, changes in image
brightness caused by camera exposure time and lighting
condition makes the tracking against old keyframes difficult.
Hence, [13] also uses the relative brightness as a criterion.

Using the combination of different heuristics usually relies
on certain assumptions of the sensor configurations and

Fig. 2: An illustration of the stereo overlapping check between two cameras,
Ci and Cj . The blue stars are the sampled points on the image plane of
camera i. The green stars are the 3D points that are successfully projected
to camera j, and the red ones are the points that fall out of the image plane.

scenes, which makes parameter tuning as well as the ap-
plication to general multi-camera setups complicated.

2) Information-theoretic methods: These methods rely on
more principled metrics and are less common in literature.
Das et al. [15] chose the keyframes to be included in the BA.
Their method favors the frames that bring the most entropy
reduction in the map points and essentially selects the most
informative keyframes for BA. The criterion from DVO [16]
is the most related to ours: it selects keyframes based on
an entropy ratio that reflects the uncertainty of the camera
pose with respect to the last keyframe. Our method follows
a similar idea, but considers all the current keyframes, which
reflects the information contained in the entire local map.

C. Map Management and Query

To estimate the pose of newly coming frames, the front-
end usually needs to find the 2D-3D correspondences be-
tween the observations in the new images and the map. A
common method is the covisibility check: only search for
the matches of the 3D points in the keyframes that reproject
onto the new images, such as in [8], [13], [17], [18]. As
more cameras are added, the complexity of the covisiblity
check increases quadratically, and keyframes from cameras
with large common FoVs introduce high redundancy. For
example, for stereo pairs with highly overlapping FoVs,
it is usually sufficient to keep one of the two frames as
keyframes. Obviously, it is not clear how this strategy can
generalize to arbitrary camera configurations. To the best of
of our knowledge, there is no previous study about efficiently
querying map points in a general multi-camera setup.

III. ADAPTIVE INITIALIZATION

Our initialization method has no hard-coded assumptions
regarding the camera configuration. For any multi-camera
setups with known intrinsic and extrinsic calibrations, it is
able to select the proper initialization method accordingly,
without the need to change the algorithm settings manually.
Specifically, it utilizes an overlapping check between the
camera frustums to identify all the possible stereo camera
pairs. If there exists stereo pairs, the initial 3D points are
created from the stereo matching of these stereo pairs.
Otherwise, the 5-point algorithm is run on every camera as
in a standard monocular setup, and the map is initialized
whenever there exists a camera that triangulates the initial
map successfully (i.e., enough parallax, and the camera is
not undergoing strong rotation).
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Fig. 3: Negative entropy evolution of 3 runs in EuRoC MH 01. E(T) for
each run is shown in a different color, and the red dots indicates where a
frame is selected as a keyframe. E(T) increases after a keyframe insertion
and decreases as the sensor moves away from the map.

The core part of the aforementioned initialization scheme
is the overlapping check. The overlapping checking al-
gorithm checks all the possible pairs in a multi-camera
configuration, denoted as Cij , where i, j ∈ 1 . . . n, i 6=
j, and n is the total number of cameras in the system,
and finds all possible stereo pairs. For each pair Cij , the
algorithm is illustrated in Fig. 2. We denote a 3D point in
homogeneous coordinates as (x, y, z, 1)>. With the camera
projection function π, a 2D point u in the image plane
can be back-projected to a 3D point in the camera frame
for a depth value z as p = π−1(u, z). We also know the
corresponding relative transformation Tij from the extrinsic
calibration of the camera system. In detail, the overlapping
check first uniformly samples (or possibly using different
sampling methods) a set of points Ui on the image plane
of camera i. Then the points in Ui are back-projected to
the minimal and maximal depths dmin and dmax as Pi,max

and Pi,min respectively. These depths are specified by users
and encloses the effective depth range of the initialization
process. Given the Tij and the intrinsics of camera j, we
then project the 3D points Pi,min and Pi,max to camera j
as Uj,min and Uj,min and check whether these points fall
in the image plane of camera j. The projection from ui in
Ui to camera j is considered successful only if both of the
backprojected 3D points at dmin and dmax are within the
image plane of camera j. A pair of cameras is considered as
a stereo pair if the overlapping ratio, # of Successful Projection

# of Total Samples , is
above a user-defined threshold.

The proposed sampling-based method is generic. By using
the camera projection/backprojection directly, we can find all
stereo pairs across different types of camera models without
the need to explicitly calculate the overlapping volume
of possibly very different frustums (e.g., between pinhole
and fisheye cameras), which can be non-trivial to compute
analytically. Moreover, the check can be computed offline,
and the valid stereo pairs be directly used at runtime.

IV. ENTROPY-BASED KEYFRAME SELECTION

The concept of keyframe naturally generalizes to a
keyframe bundle for a multi-camera setup, as in [11]. A
keyframe bundle contains the frames from all the cam-
eras at the same time. In the following, we will use the
terms keyframe and keyframe bundle interchangeably. To
determine when a keyframe should be added, we design
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Fig. 4: Running average Ẽ(T) and keyframe selection. The running average
filter (yellow) tracks the localization quality since the last keyframe. When
the negative entropy of the current frame (blue) falls below a certain
percentage of the running average (green dash), a new keyframe is selected
(red dots) and the running average filter is reset.

an entropy-based mechanism. In particular, the local map
contains 3D points (organized as keyframes or voxels as
in Section V) against which new frames can localize. In-
tuitively, a keyframe should be selected when the current
map is not sufficient for tracking, since new points will
be initialized at the insertion of a keyframe. Therefore, we
select keyframes based on the uncertainty of the keyframe
bundle pose with respect to the current map. Compared with
heuristics, our method is more principled, has less parameters
(only 1) and generalizes to arbitrary camera configurations.
In this section, we first provide necessary background on the
uncertainties in estimation problems and then describe our
keyframe selection method.

A. Uncertainties Estimation in Nonlinear Least Squares

For a parameter estimation problem of estimating x from
measurement z with normally distributed noise, a common
method is to cast the problem as a nonlinear least squares
(NLLS) problem. In iterative algorithms of solving NLLS
problems, such as Gauss-Newton, the uncertainties of the
estimated parameters can be obtained as a side product
in each iterative step. Specifically, the normal equation at
step i is (J>Σ−1z J)δxi = J>r(xi), where r(xi) is the
residual given the current estimate xi, δxi the optimal
update, and J the Jacobian of z with respect to x. With
first-order approximation, the covariance of the estimate can
be obtained by backward propagating the measurement noise
to the parameters, which is simply:

Σx = (J>Σ−1z J)−1, (1)

which is an important tool to quantify the estimation quality
of NLLS solutions [19, Chapter 5, App. 3]. Ix = J>Σ−1z J

is also known as the Fisher information.

B. Negative Pose Entropy in SLAM

In keyframe-based SLAM, the pose of the current camera
is usually obtained by solving a NLLS problem. For example,
one common method is to solve a Perspective-n-Points (PnP)
problem using the Gauss-Newton method. In this case, the
Fisher information and the covariance of the camera pose
can be directly obtained as

IT = J>T Σ
−1
u JT, ΣT = (J>T Σ

−1
u JT)

−1, (2)



Algorithm 1: Running average filter.
Input: newest entropy value E(T)
Result: Returns the current running average, Ẽ(T )
initialization: n = 0, Ẽ(T ) = 0
for each incoming E(T ) do

n = n + 1
Ẽ(T ) = Ẽ(T ) + (E(T )− Ẽ(T ))/n
return Ẽ(T )

where u is the observation, and JT is Jacobian of u with
respect to the camera pose T. 1 Note that in different NLLS
problems, the Fisher information and covariance may be
obtained differently (e.g., marginalization in a BA setup).

As mentioned above, our goal is to use the estimate
uncertainty of the current pose to indicate whether a new
keyframe should be inserted. While (2) provides a principled
tool, it is more desirable to have a scalar metric as keyframe
selection criteria. Therefore, we utilize the concept of the
differential entropy for a multivariate Gaussian distribution,
which is H(x) = 1

2m(1 + ln(2π)) + 1
2 ln(

∣∣Σ
∣∣) for a m-

dimensional distribution with covariance Σ. Note that the
magnitude of the entropy only depends on ln(

∣∣Σ
∣∣). Moreover,

in the context of NLLS for pose estimation, from (2), we
have ln(|ΣT|) = − ln(|IT|). Since that the Fisher information
IT comes for free in the process of solving NLLS problems,
we can actually avoid the matrix inversion and use

E(T) , ln(|IT|) (3)

to indicate how well the camera can localize in the current
map. We refer to (3) as negative entropy. Since (2) is simply
the sum of individual measurements, it is straightforward to
incorporate the observations from all the cameras into one
single scalar (3) in an arbitrary multi-camera setup.

C. Running Average Filter for Keyframe Selection

Examples of the negative entropy E(T) evolution on the
same dataset (MH 01) with our multi-camera pipeline (see
Section VI) are shown in Fig. 3. We can see that E(T) indeed
reflects the localization uncertainty of the pose with respect
to the current map. After inserting a new keyframe to the map
(red dots on the curves), the negative entropy increases, due
to the triangulation of new points; and as the camera moves
away from the last keyframe/local map, E(T) decreases until
another keyframe is selected. On the other hand, even for the
same environment, the absolute value of E(T) varies from
run to run. This indicates that using an absolute threshold
for E(T) as the keyframe selection criterion is not feasible.

Instead, we propose to track the negative entropy value
using a running average filter (see Algo. 1) in the local
map and selects a keyframe when E(T) of a frame is below
certain percentage of the tracked average Ẽ(T). Since we
localize the camera with respect to the latest map, and the
map remains the same until a new keyframe is added, Ẽ(T)
essentially tracks the average pose estimation quality with
respect to the local map up to the current time. Note that the
running average filter is reinitialized every time the map is

1Technically, the Jacobian is with respect to a minimal parameterization
of 6 DoF poses, which is omitted here for easy presentation.

updated with a new keyframe, since the local map changes
as a new keyframe is inserted. Moreover, we use a relative
threshold with respect to the running average Ẽ(T) so that the
selection is adaptive to different environments. This threshold
is the only parameter in our keyframe selection method, and
it is intuitive to tune. A higher value means more frequent
keyframe insertion, and vice versa (see Table II). An example
of the running average filter is shown in Fig. 4.

V. VOXEL-MAP QUERY

For new incoming images, the tracking process in SLAM
is responsible to find the correspondences between the ob-
servations in the new images and the 3D points in the map.
For monocular and stereo setup, this can be efficiently done
by searching only for matches of the points in the keyframes
that overlap with the new frames. For a general multi-camera
setup, since keyframes from different cameras can have high
overlap, this method can introduce considerable redundancy.
Therefore, we organize the map points in a voxel grid, and
directly sample the camera frustums for possible 3D points
to match, as proposed in [20].
Map representation: Our voxel-map is a hash table using
the voxel hashing technique described in [21]. Each entry
in the hash table is a voxel of a user-defined size at a
certain position, and it contains the 3D points (from SLAM
pipeline) that fall in this voxel. The voxels in the hash table
are accessed via a hashing function on the integer world
coordinates. Therefore, to get the 3D points around a location
of interest, we can directly get the corresponding voxel in
constant time. In addition, the map only allocates voxels
where there are 3D points and does not store empty voxels.
The voxel hash table is synchronized with the map points in
the SLAM pipeline.
Map query: To get the map points to match for a multi-
camera system, we sample a fixed number of points in
the camera frustums and find corresponding voxels in the
voxel-map. The points inside these voxels are then used to
match the observations in the new images. In this way, it is
guaranteed that all and only the 3D points within the FoVs
of all cameras are retrieved from the map. Moreover, we
avoid the process of checking overlapping keyframes from
different cameras, which may have many points in common
and introduce redundant computation.

Note that we only use voxel-map for querying visible
landmarks. Keyframes are still selected for triangulation and
potentially bundle adjustment.

VI. EXPERIMENTS

To validate the proposed method, we applied the afore-
mentioned adaptations to a state-of-the-art keyframe-based
visual-inertial odometry pipeline that consists of an efficient
visual front-end [10] and an optimization-based backend
similar to [22]. We performed experiments on both simulated
and real-world data. In simulation, we verified the robustness
and analyzed several properties of the pipeline with different
multi-camera configurations. For real-world data, we first
tested the stereo setup with the EuRoC dataset [23] to show



Fig. 5: Simulated figure 8 trajectory in the simulation environment. The
trajectory was estimated by running the adapted VIO pipeline with 5
cameras. The segment where the monocular setup lost track is marked in
red. The magenta dots are the tracked landmarks by SLAM systems.

that the proposed method performs on par with standard
methods but is much easier to tune. We then tested the multi-
camera setup with the AutoVision dataset [24]. For quantita-
tive evaluation of accuracy, we follow the evaluation protocol
in [25]. We repeated the experiment on each sequence for
5 runs using the same setting unless specified otherwise. In
each of the experiment, we kept the parameters the same for
different camera configurations.

A. Simulation Experiment

We tested the pipeline on a drone with various camera
configurations: 2 cameras (a front mono; a side mono), 3
cameras (a front stereo; a side mono), 4 cameras (a front
stereo; a side stereo), and 5 cameras (a front stereo; a side
stereo; a down mono). We refer the reader to the accompa-
nying video for the visualization of our setup. We set the
drone to fly a figure 8 trajectory in the environment (Fig. 5).
Note that a monocular setup from either the front or side
stereo failed when the drone went around a textureless pillar
(marked in red in Fig. 5), and the corresponding quantitative
results are omitted. Next, we analyzed the accuracy and
timing, and the performance of voxel-map and keyframes.
Accuracy: The relative pose error of different camera con-
figurations is shown in Fig. 6. Adding more cameras to the
system improved the trajectory estimation accuracy, but the
improvement became marginal after the 3-camera configura-
tion. This is because adding the third camera formed a stereo
pair (front stereo) compared with the 2-camera configuration,
which made direct triangulation possible.
Timing: The total front-end time for different configurations
is shown in Fig. 7 (left). As we increased the number of
cameras in the configuration, we observe an increase in the
total processing time of the front-end. The increase in time is
not as significant between the 4 and 5 camera configurations,
as the 5th camera (downlooking) did not produce as many
landmarks as the other cameras.
Voxel-map vs. Keyframes: In general, the voxel-map
method retrieved more landmarks (Fig. 7 middle) than the
keyframe based method, because some of the visible land-
marks in the current frame may not be stored in nearby
keyframes. However, the front-end consumed more time
in our experiment, and we assume that it can be further
reduced by optimizing our voxel-map implementation. In
terms of memory footprint (Fig. 7 right), the voxel-map
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Fig. 6: Overall relative translation error in simulation for 5 runs.
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Fig. 7: Comparison of the proposed voxel-map with standard keyframes for
different camera configurations (2 to 5 cameras). Left: total time for the
front-end in VIO. Middle: retrieved landmarks for matching from the map.
Right: number of references/pointers to landmark positions.

increased much slower than keyframes. The reason is that
the keyframe-based map stores landmark observations in
each keyframe. For a multi-camera setup with large FoV
overlap, it is very likely different cameras observe the same
landmarks, resulting in redundant copies in keyframes. In
contrast, the voxel-map stores the references only once.

B. Real-world Experiment

1) EuRoC Dataset: We tested the multi-camera VIO
pipeline on EuRoC dataset for the stereo setup. The number
of keyframes in the sliding window was set to 10. To
show the effect of the relative negative entropy for keyframe
selection, we also experimented with different relative en-
tropy thresholds. We use the notation “er-m” to denote our
experimental configurations, where r is the entropy threshold
in percentage, and m the map representation used (i.e., voxel
or keyframes). The default pipeline that is carefully tuned for
stereo setups is denoted as “default-kf”.

The median values of the absolute trajectory error in 5
runs are shown in Table I. While there is no definite winner,
the adapted pipeline in general performed similar or better
than the default pipeline. This can also be confirmed from
the odometry errors in Fig. 8 (we select three sequences only
due to the limit of space). The adapted pipeline has lower
estimate error in 10 out of 11 sequences and the entropy ratio
of 98% has the most. Regarding the number of keyframes,
it is clearly seen in Table II that increasing the relative
entropy ratio resulted in more keyframes. In addition, for
relative entropy ratio of 95%, fewer keyframes were selected
in general but the accuracy was still similar to the default
pipeline according to Table I. This indicates that the proposed
method selected keyframes more effectively and introduced
less redundancy than the default pipeline.

To summarize, as a generic pipeline, our method per-
formed at least similarly good compared with a carefully
tuned stereo pipeline, and our method was able to achieve
similar accuracy with fewer keyframes. More importantly,
we would like to emphasize that our method has only one
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Fig. 8: Relative translation error percentages from the EuRoC dataset with BA.
TABLE I: Median RMSE (meter) on EuRoC dataset over 5 runs. Lowest error highlighted in bold.

Algorithm MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02 V2 03
default-kf 0.140 0.078 0.091 0.119 0.330 0.042 0.070 0.047 0.056 0.066 0.127
e93-voxel 0.104 0.390 0.107 0.177 0.262 0.038 0.036 0.043 0.080 0.103 0.169
e95-voxel 0.078 0.084 0.093 0.182 0.237 0.040 0.047 0.049 0.056 0.087 0.171
e98-voxel 0.095 0.074 0.088 0.128 0.180 0.039 0.053 0.041 0.046 0.057 0.111

TABLE II: Average number of keyframes for 5 runs in EuRoC sequences.

Algorithm MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02 V2 03
default-kf 64.00 57.80 91.40 76.00 70.20 70.60 119.60 238.80 74.80 172.00 281.40
e93-voxel 46.00 46.30 67.80 58.80 61.80 52.80 56.20 120.40 30.80 63.40 86.80
e95-voxel 71.20 66.00 87.00 74.40 75.80 76.40 86.80 160.00 39.80 85.00 107.80
e98-voxel 154.20 137.20 181.20 138.60 143.60 176.80 177.80 305.20 84.40 169.00 203.60

TABLE III: The average number of keyframes by different keyframe
selection criteria for monocular and stereo setups.

Algorithm MH 01 MH 02 V2 01 V2 02
heuristic, mono 202.75 190.75 150.75 379.75
heuristic, stereo 90.00 117.25 84.75 204.5
entropy, mono 129.5 128.25 100.00 193.5
entropy, stereo 122.25 125.25 98.5 195

TABLE IV: Different trajectory error metrics from the multi-camera pipeline
on the Science Park day sequence. The first row contains the absolute RMSE
of the full trajectory (547.488m)

Metric F FR FRB
Abs. Trajectory error (meter) 1.184 2.366 1.766

Rel. Trans. Percentage @ 200m 0.582 1.808 1.320
Rel. Trans. Percentage @ 400m 0.642 1.07 0.760

parameter for keyframe selection, which makes the task of
parameter tuning much easier.
Sensor Agnostic We also performed an experiment compar-
ing the number of selected keyframes between monocular
and stereo configurations. We only ran the visual front-end
in this case to remove the influence of the optimization back-
end, which caused the different keyframe numbers between
Table II and III. The average number of keyframes on some
sequences in EuRoC is shown in Table III. The heuristic
method selected drastically different numbers of keyframes
between monocular and stereo configurations because they
had to be tuned differently for these configurations. In
contrast, our entropy-based method selected very similar
numbers of keyframes. This is due to fact that our method
essentially summarizes the information in the map instead
of relying on camera-dependent quantities. In particular, the
stereo pair in EuRoC dataset has largely overlapping FoVs,
and thus the visible areas of the environment were similar for
monocular and stereo setups, leading to similar information
for our keyframe selection method.

2) AutoVision Dataset: We evaluated our pipeline on the
Science Park day sequence, which is a large-scale outdoor
sequence in a autonomous driving scenario. The trajectory
is 547.448 m long and the maximum speed is 3.941 m/s.
Following [12], we tested our pipeline with F, FR, and FRB
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Fig. 9: Top view of the estimated and groundtruth trajectory of the FRB
configuration from the Science Park day sequence.

configurations. The trajectory errors, computed in the same
way as in [12], are shown in Table IV, and the estimated
trajectory (FRB) in Fig. 9. While the estimation accuracy is
acceptable and proves the effectiveness of our method, we
indeed observed that the accuracy of the trajectory estimates
does not necessarily increase as we add more cameras to
the pipeline. We suspect that the reason to be the inaccurate
extrinsic (similar behavior can be observed in [12]).

VII. CONCLUSION

In this work, we introduced several novel designs for
common building blocks in SLAM to make an adaptive
system for arbitrary camera configurations. In particular,
we proposed an adaptive initialization scheme that is able
to automatically find the suitable initialization method, an
information-theoretic keyframe selection method that incor-
porates the information from all cameras elegantly and a
voxel-map representation from which we can directly re-
trieve the landmarks in the camera FoVs. We applied these
techniques to a state-of-the-art VIO pipeline, and extensive
experimental results showed that the resulting pipeline was
able to adapt to various camera configurations with minimum
parameter tuning.
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