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Abstract— Methods for state estimation that rely on visual
information are challenging on legged robots because of rapid
changes in the viewing angle of onboard cameras. In this work,
we show that by leveraging structure in the way that the
robot locomotes, the accuracy of visual-inertial SLAM in these
challenging scenarios can be increased. We present a method
that takes advantage of the underlying periodic predictability
often present in the motion of legged robots to improve the
performance of the feature tracking module within a visual-
inertial SLAM system. Our method performs multi-session
SLAM on a single robot, where each session is responsible for
mapping during a distinct portion of the robot’s gait cycle. Our
method produces lower absolute trajectory error than several
state-of-the-art methods for visual-inertial SLAM in both a
simulated environment and on data collected on a quadrupedal
robot executing dynamic gaits. On real-world bounding gaits,
our median trajectory error was less than 35% of the error of
the next best estimate provided by state-of-the-art methods.

I. INTRODUCTION

While there has been tremendous progress in the devel-
opment of state estimation and simultaneous localization
and mapping (SLAM) algorithms in recent years, dynamic
motion can still induce failure on even the most robust sys-
tems [1]. More specifically, methods for state estimation and
SLAM that rely on visual information experience a signifi-
cant decrease in the performance of visual feature tracking
when there are rapid changes in the viewing angle of cameras
onboard a robot. Legged robots are of particular interest to
us in this work because they are examples of dynamical
systems that maintain periodic structure in their motion
when executing gait-like behaviors. When locomoting with
dynamically stable gaits, such as walking or running on flat
ground, legged robots exhibit patterns in their footfall and
resulting body orientation. Rapid orientation changes, such as
those caused by contact events, have typically been thought
of as hindrances to performing SLAM on legged systems [1].
However, our method proposes using the predictability of the
periodic motion resulting from these events to improve the
performance of estimation compared to an otherwise naive
approach.

In this work, we present a novel factor graph design for
visual-inertial SLAM that exploits the periodic predictability
in the visual information obtained by a legged robot. Our
approach explicitly differentiates between visual features
detected during each unique section of the robot’s gait cycle,
when visual information is more likely to be similar. By
performing visual SLAM separately on each portion of the
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robot’s gait cycle, we can improve the performance of the
feature tracking module that is critical to the success of visual
SLAM. Figure 1 shows an example of how this method
could introduce three different visual SLAM sessions to track
different portions of the gait cycle of a pitching legged robot.
To obtain a unified SLAM estimate, our approach connects
each individual visual SLAM session to one another by in-
corporating inertial measurement unit (IMU) measurements
from the robot. Our method tightly couples visual and inertial
measurements in a factor graph optimization framework to
achieve greater combined performance than any individual
SLAM session.

Fig. 1: Three SLAM sessions performing estimation peri-
odically when a robot is looking upwards, forwards, and
downwards. The dial represents which part of the robot’s gait
cycle images were taken from. The left column of images
shows the result of periodic feature tracking in simulation.
The right column of images shows the corresponding three-
dimensional map of landmarks for each SLAM session.

This method is demonstrated on a robot in simulation
and on a real-world quadrupedal robot, the Ghost Robotics
Minitaur [2]. Furthermore, the performance of this approach
is compared against several state-of-the-art implementations
of visual and visual-inertial SLAM. Experimental results
show that when compared to the baseline methods, this
approach demonstrates clear improvement in estimation ac-
curacy, especially when the robot performs more dynamic



motions. In the bounding gaits tested, this method’s error
was less than 35% of the median trajectory error of the best
state-of-the-art method tested. Lastly, future directions for
using periodicity to improve the performance of SLAM are
noted.

II. BACKGROUND/RELATED WORK

SLAM is a large field with a wide variety of contributions,
many of which are discussed in [1]. This section highlights
the most relevant publications including systems used for
benchmarking, alternative approaches, and inspiration for the
methods presented in this paper.

A. State-of-the-Art General Use SLAM Systems

This section provides a brief description of the state-of-
the-art SLAM systems used as comparison points for the
methods presented within this paper. Only indirect methods
are considered as the large frame to frame displacements
break many of the underlying assumptions of direct methods
which use the Taylor series expansion to solve nonlinear
constraints. The interested reader can find more comparison
between direct and indirect methods in [3]. Although these
systems perform well in less dynamic scenarios, all of them
fail to provide accurate estimates of robot pose in the more
dynamic scenarios discussed in this paper.

1) ORB-SLAM2: ORB-SLAM2 is an optimization-based
purely visual SLAM system that uses data association over
multiple time scales through local tracking and longer term
loop closure and bundle adjustment through the use of
keyframes [4]. This use of multiple timescales is one of
the main features of ORB-SLAM2. However, when there
are many difficult to estimate frames in a row, the system
will enter a lost state before being able to take advantage of
multiple time scales of estimation.

2) VINS-Fusion: VINS-Fusion is an optimization-based
visual-inertial SLAM system with a large focus placed on
the integration of inertial measurements into the factor graph
[5,6]. The addition of inertial information puts additional
constraints on the pose estimations within the system, which
helps VINS-Fusion to outperform ORB-SLAM2 in mod-
erately dynamic scenarios. However, at the highest levels
of dynamic motion discussed in this work, the inertial
information still is not enough to prevent VINS-Fusion from
providing inaccurate estimates of robot pose.

3) MSCKF VIO: Multi-State Constraint Kalman Filter
(MSCKF VIO) is a filtering-based method that uses visual-
inertial data in an extended Kalman filter rather than a
factor graph optimization to estimate the state of the robot
[7]. Unlike ORB-SLAM2 and VINS-Fusion, MSCKF does
not maintain a long-term map of its surroundings as it is
only performing odometry. However, because of its distinct
filtering-based back-end, we still include it as a comparison
point.

B. Leg Odometry Based Methods

Recently, there has been a lot of interesting work on
improving the quality of SLAM performance on legged

robotic systems. In works such as [8–10], an additional factor
is added to the factor graph optimization that represents
the estimated motion from the forward kinematics of the
system over the time period. While there have been many
impressive results from these methods, they are presented
on less dynamic gaits such as walks and slower trots with
more careful leg placement. In gaits such as bounding, a large
amount of camera pitch is expected, which would decrease
the utility of visual odometry factors, which these systems
are still reliant on. While in a mature system, leg odometry
factors will provide useful additional constraints, the visual
constraints of the system must also be improved to achieve
reliable performance in the most dynamic scenarios.

C. Multi-Agent SLAM

The main inspiration for this Periodic SLAM algorithm is
cooperative mapping [11]. In this paper, the constraints from
visual SLAM sessions running on multiple different robots
are simultaneously optimized. To address the challenge of
obtaining a unified estimate from all of the sessions, “en-
counters” between robots are used to constrain the multiple
SLAM sessions into one set of world coordinates. Each
encounter, determined when more than one robot observes a
similar set of visual features, is formulated as a relative pose
constraint between the different robots.

In this work, we treat different portions of a legged
robot’s gait cycle as individual visual SLAM sessions. Unlike
[11], our approach constrains each visual SLAM session to
one another using IMU measurements since each session is
running on a single robot.

III. PERIODIC SLAM

To increase the performance of state estimation on dy-
namic, periodically moving robots, this approach performs
visual feature tracking periodically across similar intervals
of gait cycles. This method connects multiple periodically
updating visual SLAM sessions with IMU measurements in
a factor graph. This section discusses details behind perform-
ing periodic data association and the relevant mathematics.

A. Periodic Feature Tracking

Typically in visual odometry or visual SLAM systems,
short-term data association happens between sequential cam-
era frames. While tracking features across sequential camera
frames works well on slow-moving robots, on dynamically
locomoting legged robots this kind of data association often
fails. When there is known periodicity in the viewpoint of a
robot, it is beneficial to track features periodically at similar
phases of the robot’s gait cycle.

To perform periodic feature tracking, this method relies
on being able to consistently extract and track features from
images collected during an interval in which the phase of the
robot’s gait cycle is similar. Thus, this method makes two key
assumptions about the robotic platform and its environment:

1) Periodic tracking has a global clock indicating the
phase of the robot’s gait.



2) Images taken at similar gait phases contain mutually
visible features.

Given a set of images with similar gait phases and mutual
visual features, feature tracking begins with an initialization
step and then a tracking step. After initializing visual features
in the first image, the tracking step persists as long as there
are enough features to track. If at any point the system
“loses” too many features to track, the system re-initializes to
add new visual features. While this approach is general to any
feature detector, for efficiency Harris corner detection [12]
is used to initialize features and the Lucas-Kanade method
[13] is used to track them.

Multiple periodic feature trackers are initialized to track
different segments of the robot’s gait cycle. For each periodic
feature tracker, a visual SLAM session is introduced, which
is responsible for using the tracked features to build a sparse
map of three-dimensional visual landmarks and to estimate
the location of the robot during a certain phase segment.
When performing multi-session SLAM, the problem of fus-
ing different state estimates from each visual SLAM session
must be addressed. While a naive approach to this prob-
lem might average the different SLAM sessions’ estimates,
it would be advantageous if these sessions tightly shared
information to achieve a more robust combined performance.

Since not enough visual features may be shared between
different phases, IMU measurements are used to constrain
separate SLAM sessions rather than visual constraints. IMU
sensors can be used to provide measurements of the robot’s
acceleration and angular velocity between different SLAM
sessions when feature tracking is not reliable. By performing
integration of the IMU measurements, relative pose con-
straints are introduced between each of the SLAM sessions.

B. Periodic Factor Graph

After obtaining periodically tracked features from the
front-end of this SLAM system, the goal of the back-end is to
obtain an estimate for the set of unknown robot poses (S) and
landmark positions (L) by performing optimization-based
probabilistic inference. Obtaining this estimate involves max-
imizing the conditional probability density of the set of
unknown variables given the set of sensor measurements (Z)
[14]. The values of S and L that maximize this probability
density and the solution to SLAM are called the maximum
a posteriori (MAP) estimate:

SMAP , LMAP = argmax
S,L

P (S,L|Z) (1)

Contemporary approaches for solving the problem of
SLAM rely on sparse factor graph based optimization [15].
Factor graphs are a class of graphical models that are useful
in representing sparsity within the distribution, P (S,L|Z),
to enable efficient MAP inference. More precisely, they are
a bipartite graph that consists of two types of nodes: factors
and variables [14]. In the context of SLAM, variable nodes
are used to represent the unknown, latent robot and landmark
states we wish to estimate: (S,L), and factors are used

to represent constraints (specified by sensor measurements)
between states: φ(·) : (S,L)→ R.

SMAP , LMAP = arg max
S,L

∏
i

φi(S,L) (2)

Factor graphs are particularly useful in solving this multi-
session SLAM problem because they are amendable to
adding constraints between sequential and periodic robot
states. Figure 2 provides a simplified version of the factor
graph that this method uses to solve the problem of SLAM
with the incorporation of periodic feature tracking across
three different portions of a robot’s gait cycle.

Fig. 2: Simplified factor graph in the proposed Periodic
SLAM. Each cycle around the circular graph represents one
period of the robot’s gait cycle. Robot states positioned along
a spoke of the graph have a similar gait cycle phase.

In Figure 2 visual data association is performed across the
spokes of the graph. Each spoke of the graph can be thought
of as a SLAM session maintaining its own map of landmarks
in the environment. The colors of the different landmark
nodes are used to specify the corresponding portion of the
robot’s gait cycle in which they are tracked. While this could
be extended to any number of estimators, for our experiments
we use a graph with visual SLAM being performed on three
portions of the robot’s gait cycle: when the robot is looking
upwards, when the robot is looking forwards, and when the
robot is looking downwards. Moreover, although not pictured
in Figure 2, there can be multiple robot poses in a row for
a single phase. Additionally, in practice, the “middle” phase
is expanded between each of the “up” and “down” phases,
not only in one direction.

C. Factor Graph Optimization

This section explains the mathematics behind each factor
in the periodic factor graph shown in Figure 2. To represent



the state of the robot and each visual landmark, there are
two types of variable nodes: si and li. Each robot state, si,
represents the pose and velocity of the robot at a particular
time. Each visual landmark state li represents the position
of a unique point in the robot’s map.

It is assumed that each of the factors is corrupted with
zero-mean, additive Gaussian noise. Given this assumption,
each Gaussian factor can be written in a form similar to
Equation 3, where F can be thought of as a constraint or
cost function which is dependent on the robot and landmark
states as well as a sensor measurement zi using the squared
Mahalanobis distance ‖ · ‖2Σ for weighting based on the
measurement covariance Σ.

φi ∝ exp(−
1

2
‖F (si, li, zi)‖2Σ) (3)

1) The Prior Factor: The prior factor is the simplest
factor in the full periodic factor graph shown in Figure 2.
While all other factors are useful in estimating the robot’s
relative motion, the prior factor grounds the estimated state
of the robot to a global reference frame. Given a prior
measurement of the initial location of the robot, zp, with
covariance Σp, a Gaussian prior factor on the initial robot
state is defined as:

φPrior ∝ exp(−1

2

∥∥(hPrior(s1)− zp)
∥∥2

Σp)

where hPrior is trivially the identity function
(4)

2) The Visual Factor: Each visual factor in Figure 2
represents a cost between its connected landmark and robot
nodes that is dependent on a visual measurement, zvi . Visual
measurements are periodically tracked stereo features from
the front-end of SLAM with the form zvi = [uLi , u

R
i , vi].

Here, uLi and uRi are the x coordinates of the tracked feature
in the left and right stereo images and vi is the y coordinate
of the tracked feature in both images.

To calculate the cost for a particular visual measurement,
the visual factor transforms a three-dimensional landmark
into an estimated stereo feature, ẑvi , at a corresponding robot
state. The visual measurement function, hvisual, performs
this transformation in two steps: coordinate frame transfor-
mation (g) and projection (π):

hV isual(si, li) = π(g(si, li)) = ẑvi (5)

After transforming the 3D landmark li into a stereo
feature point, the re-projection error is calculated for a visual
measurement with covariance Σv as follows:

φV isual ∝ exp(−1

2

∥∥hV isual(si, li)− zvi
∥∥2

Σv ) (6)

3) The IMU Factor: Each IMU factor uses measurements
from the two sensors that make up the IMU: the gyroscope
and the accelerometer. Using these measurements, it is
possible to describe the dynamics of the robot’s state si
between two sequential time instances. This process can be

summarized with a dynamics function hIMU which predicts
the next robot state given a sequence of IMU measurements.

ŝi+1 = hIMU (si, z
IMU
i ) (7)

Using this IMU process function, each IMU factor can be
written as an error between the predicted and estimated next
state of the robot:

φIMU ∝ exp(−1

2

∥∥si+1 − hIMU (si, z
IMU
i )

∥∥2

ΣIMU ) (8)

To avoid adding states to the graph at a high rate, IMU
preintegration [16,17] is used, where many IMU measure-
ments are summarized into a single constraint between
frames. The interested reader should reference [17] for
details about preintegrated IMU factors and biases.

4) MAP Estimation and Robust Cost Function: After
defining the form of each of the factors in the periodic
factor graph, nonlinear optimization is performed to obtain
a unified SLAM solution. Moreover, each of the factors
can be plugged into Equation 2 to arrive at the following
minimization:

SMAP , LMAP = argmax
s,l

T∏
i=0

φPrior
i φV isual

i φIMU
i

= argmin
s,l

∥∥(hPrior(s1)− zp1)
∥∥2

Σp

+

{
T∑

i=0

∥∥hV isual(si, li)− zvi
∥∥2

Σv

+
∥∥(si+1 − hIMU (si, z

IMU
i ))

∥∥2

ΣIMU

}
(9)

The general approach to solve this is to first use a Taylor
series expansion to linearize the optimization objective, and
then iteratively solve the linearized equation using Gauss-
Newton or Levenberg-Marquardt [18] methods. In our imple-
mentation, we also rely on the iSAM2 algorithm to perform
incremental SLAM more efficiently [19].

In the standard L2 cost objective, all measurements of a
specific type are modeled with the same uncertainty. How-
ever, without explicitly pruning erroneous measurements, this
method is largely affected by outliers. To combat this issue,
a robust error model is incorporated into the optimization
to weight each measurement based on its residual value ri
(e.g. for a visual measurement: ri = hV isual(si, li) − zvi ).
While many different robust error models exist [20], the
Geman-McClure cost function (ρ) is chosen because of its
particularly high bias against large outliers:

ρ(ri) =
r2i
2

1 + r2
i

(10)

IV. TESTING ALGORITHMIC PERFORMANCE

A. Simulation

To evaluate the performance of the Periodic SLAM sys-
tem, we first conducted experiments in a simple hallway



environment made in Gazebo. Lines of different colors are
drawn onto the walls of the simulated hallway to ensure an
abundance of visual features is available. Rather than using
a legged robot to collect data in the simulated environment,
we use an actuated stereo-inertial camera on wheels. Using
two well controlled degrees of freedom, the system approx-
imates the motion of a camera attached to a hopping and
pitching legged robot. Images from the simulated camera’s
perspective can be seen in Figure 1.

θt = θmax sin(ω2πt)

δt = δmax sin(ω2πt)
(11)

Fig. 3: The simulated robot setup, which translates forward,
raises and lowers the camera height, and pitches the camera
viewing angle.

We describe the motion of the simulated robot with a set
of simple periodic functions shown in Eq. 11 that take four
parameters as input: maximum pitch angle θmax = 25◦,
maximum heave distance δmax = 0.05m, the forward
velocity Ẋ = 0.2ms−1, and gait frequency ω in Hz,
which is varied in our experiments. To observe the effect
of increasingly dynamic camera motion, we ran each SLAM
algorithm on the robot as it moved forward 10 meters in
the simulated hallway environment, and we ran 50 trials at
different gait frequencies ranging from .125 Hz to 2.5 Hz.

Figure 4 shows the feature tracking performance of our ap-
proach and each of the baseline methods as a function of gait
frequency. The tracking metric is an average of the number of
tracked features relative to the number of candidate features
from the prior frame for all frames in the robot’s trajectory.
By tracking features periodically rather than sequentially,
Periodic SLAM tracks a higher percentage of prior features
than all 3 other methods at frequency values above 0.5Hz.
Furthermore, Periodic SLAM consistently tracks over 75% of
candidate features even on the most dynamic motion tested.

In Figure 5, the RMSE of absolute trajectory error (ATE)
of the four different methods are compared as the frequency
of the motion varies. At lower gait frequencies, Periodic
SLAM under-performs traditional methods because it ignores
similarities between sequential visual information. However,
at frequency values above approximately 0.75Hz, Periodic
SLAM is more accurate than all of the other methods.

Fig. 4: Feature tracking performance of each SLAM system
on the simulated dataset. The lines show the median per-
formance for each SLAM system over 50 trials at various
gait frequencies. At higher gait frequencies, periodic feature
tracking performs better than sequential feature tracking.

Fig. 5: RMSE of ATE of each SLAM system on the
simulated dataset. The shaded regions represent the first to
third quartiles across 50 trials at various gait frequencies.

B. Minitaur

In addition to simulated experiments, we evaluated the
performance of Periodic SLAM on data collected from
an Intel RealSense D435i mounted on a Ghost Robotics
Minitaur. Stereo images from the camera are collected at
30 Hz, and IMU data are collected at 300 Hz. Because we
were unable to access phase information from the robot’s
onboard controller, we hand labeled phase data for all sensor
measurements. All experiments used an Optitrack motion
capture system to provide ground truth pose information.

In our experiments, the Minitaur robot moved forward in
a room while it executed two main types of gaits: a slow
walking gait with relatively low camera pitch (easy gait) and
a rapid bounding gait with large camera pitching (hard gait
1). To vary the visual information captured by the camera,
we also collected data from the robot as it executed the rapid
bounding gait while facing the opposite direction (hard gait
2). We ran each SLAM algorithm on data collected from 7



trials for each of these three situations.

Fig. 6: Comparison of the estimated trajectories from each
method on the three datasets. For the two difficult robot gaits,
our method’s estimated trajectory (purple) follows the ground
truth trajectory (black) most closely.

To minimize alignment errors between the camera frame
and the motion capture frame, all error metrics are pre-
sented after processing with the Python evo package [21].
Figure 6 shows the trajectories estimated by each of the
implementations for one trial in each of the three different
conditions. Figure 7 compares the RMSE ATE metrics of the
systems under consideration across the 3 conditions. In the
easy gait, the performance of all 4 systems are comparable,
however the more dynamic bounding gaits (Hard gait 1 and
2) demonstrate that the Periodic SLAM approach notably
outperforms all of the other SLAM systems in dynamic
regimes, experiencing median error values less than 35% of
the other methods’ errors. A similar comparison is made
in Figure 8, however in this trial, the other methods are
provided only frames where the robot is looking upwards.
While simply discarding all frames that cannot have features
matched improves the performance of the baseline methods,
Periodic SLAM still has a lower ATE because it maintains
multiple SLAM sessions. In Figures 7 and 8, the shaded
regions represent the interquartile ranges and the whiskers
represent the minimum and maximum values across 7 trials.

V. CONCLUSION

In this paper, we present a method for performing visual-
inertial SLAM during especially aggressive motion found on
legged robots. We show that on dynamic systems with peri-
odic structure, performing feature tracking periodically rather
than sequentially increases feature tracking performance. We

Fig. 7: Comparison of Absolute Trajectory Error on the
Minitaur data across SLAM implementations.

Fig. 8: Comparison of Absolute Trajectory Error on the
Minitaur data when the state-of-the-art methods are only
given frames from when the robot is facing up. Only the two
bounding gaits with significant pitching motion are shown.

develop an algorithm that maintains multiple visual SLAM
sessions that each track features periodically across different
parts of the robot’s gait cycle. By connecting each SLAM
session with measurements from an IMU in a factor graph
optimization, our approach produces a unified estimate.

While our approach addresses the issue of feature tracking
in the presence of dynamic motion, it does not address some
other phenomena that cause visual-inertial SLAM to fail
on legged robots. In future work, periodicity can also be
leveraged to tackle issues such as IMU saturation and motion
blur. By increasing the covariance of measurements during
predictable impact events, the effect of outlier measurements
due to these phenomena can be lessened.

This work can also be extended by performing an op-
timization to determine the optimal number and phase of
different visual SLAM sessions within a robot’s gait cycle.
This would make our approach more easily adaptable to
different gait patterns and even different types of periodic
motion, not necessarily on legged robots.
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