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Abstract— Visual Inertial Odometry (VIO) is of great interest
due the ubiquity of devices equipped with both a monocular
camera and Inertial Measurement Unit (IMU). Methods based
on the extended Kalman Filter remain popular in VIO due
to their low memory requirements, CPU usage, and processing
time when compared to optimisation-based methods. In this pa-
per, we analyse the VIO problem from a geometric perspective
and propose a novel formulation on a smooth quotient manifold
where the equivalence relationship is the well-known invariance
of VIO to choice of reference frame. We propose a novel Lie
group that acts transitively on this manifold and is compatible
with the visual measurements. This structure allows for the
application of Equivariant Filter (EqF) design leading to a novel
filter for the VIO problem. Combined with a very simple vision
processing front-end, the proposed filter demonstrates state-of-
the-art performance on the EuRoC dataset compared to other
EKF-based VIO algorithms.

I. INTRODUCTION

Visual Inertial Odometry (VIO) belongs to the more
general class of spatial awareness problems often referred to
as Simultaneous Localisation and Mapping (SLAM). SLAM
algorithms are a core technology in mobile robotics and
have been the subject of significant research for at least
30 years [1]. The particular problem of Visual Inertial
SLAM (VI-SLAM), where the only available sensors are an
Inertial Measurement Unit (IMU) and a monocular camera
continues to see substantial interest due the low-cost of
the required sensors and the breadth of applications [2].
Visual inertial odometry and visual inertial SLAM share
the same formulation, however, the odometry problem fo-
cuses on estimating the robot trajectory while the SLAM
problem places equal emphasis on the map. In practice, the
difference is characterised by how long feature points are
stored and whether full loop-closure is considered in the
algorithms. State-of-the-art solutions to VIO can be broadly
classified into optimisation-based or Extended Kalman Filter
(EKF)-based systems. Optimisation-based solutions, includ-
ing ORB-SLAM 3 [3], OKVIS [4] and VINS-Mono [5],
treat VI-SLAM as a non-linear least squares problem and
optimise over a moving window of data measurements. In
contrast, EKF-based solutions, such as ROVIO [6], MSCKF
[7] and SVO [8], model the state estimate as a normal
distribution, linearise the state equations and apply an EKF to
the resulting error coordinates. While optimisation methods
typically achieve the highest accuracy in computing the
robot’s trajectory, EKF methods remain of interest due to
their lower memory requirements and processing times [2].
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Fig. 1. The true and estimated trajectory of the robot in the considered
EuRoC sequences.

Classical EKF designs for VIO are well-known to grow
overconfident in their state over time [9], [10]. This inconsis-
tency is a direct consequence of unobservability of the visual
inertial SLAM problem expressed in inertial coordinates
[11], [12], [13]. In [14], Kelly and Sukhatme provide a
complete characterisation of the non-linear observability of
visual inertial SLAM, and show that the problem has a
four-dimensional unobservable subspace corresponding to
the position and yaw of the reference frame. This issue can
be mitigated by careful choice of linearisation points of the
EKF to ensure the observability of the linearised system
reflects that of the true system [13]. While this improves
the consistency of the state estimate, it does not avoid
the existence of unobservable subspaces in the state space
and, as a consequence, the underlying Riccati equation may
grow unbounded [15]. Recently, a number of authors have
exploited the Invariant Extended Kalman Filter [16] and the
novel Lie group structure proposed in [17] to develop filters
for SLAM [17], [18], [19], [20]. These filters still suffer
from unobservable states, however, invariance properties are
exploited to ensure consistency of the filter, and the un-
bounded growth in the covariance of the unobservable state
[15] can be managed using heuristics. A further limitation of
the symmetry is that it is not compatible with visual feature
outputs, and although the state propagation linearisation is
exact, the IEKF suffers from output linearisation error for
the visual SLAM problem. Mahony et al. [21] introduced
a quotient manifold structure, termed the SLAM-manifold,
that overcomes the observability issues by providing a fully



observable state space for the SLAM problem that is geo-
metrically motivated. Van Goor et al. [22] introduced a new
symmetry for the SLAM problem that acts transitively on the
SLAM-manifold, and in addition is compatible with visual
point feature measurements, overcoming the limitation of the
symmetry [17] associated with linearisation of the output
function. However, although this symmetry acts transitively
on the SLAM-manifold [21], the IEKF is only formulated
for systems posed directly on a Lie-group and cannot be
applied to systems on homogeneous spaces such as is the
case for the SLAM-manifold formulation with either of
the symmetries [17], [21] or [22]. In contrast, the recently
proposed Equivariant Filter (EqF) [23] is explicitly posed for
systems on general homogeneous spaces and can be applied.

In this paper, we derive a novel VIO filter based on
equivariance principles that has state-of-the-art performance.
We show that there is a natural invariance in the traditional
inertial coordinates of the visual inertial SLAM formulation
associated with the gauge transformation that leads to the
unobservability properties that are well known [14]. We show
that the quotient of the inertial coordinates by the gauge
transform generates a smooth manifold we term the VI-
SLAM manifold on which the system is fully observable. The
symmetry group first proposed in [22] is easily generalised
to a new Lie-group, we term the VI-SLAM group, that acts
transitively on the VI-SLAM manifold and is compatible with
the vision measurements of points features. This provides the
geometric structure necessary to implement the Equivariant
Filter (EqF) [23]. The resulting algorithm benefits from all
the advantages of a complete Lie group symmetry that is
compatible with the measurements as well as being fully
observable, overcoming limitations of previous invariant fil-
ter algorithms for visual inertial SLAM problems. Finally,
we demonstrate the performance of the proposed system on
sequences in the EuRoC dataset and achieve state of the art
results compared to EKF-based algorithms in spite of the
simplicity of our front-end image processing system.

II. PRELIMINARIES

For a background on smooth manifolds, Lie groups and
their actions, the authors recommend [24, Chapter 7]. For
a smooth manifold M , let TξM denote the tangent space
of M at ξ and let TM denote the tangent bundle. Given a
differentiable function between smooth manifolds h : M →
N , the linear map

Dξ|ξ′h(ξ) : Tξ′M → Th(ξ′)N ,

v 7→ Dξ|ξ′h(ξ)[v],

denotes the differential of h with respect to the argument ξ
evaluated at ξ′. The map

dh : TM → TN ,

(ξ′, v) 7→ (h(ξ′),Dξ|ξ′h(ξ)[v]),

denotes the differential of h where the base point is implicit
in the argument. That is, given v ∈ Tξ′M for some ξ′ ∈M ,

and a function h : M → N , we write

dh[v] := Dξ|ξ′h(ξ)[v] ∈ Th(ξ′)N .

We make extensive use of a number of Lie groups. For
a Lie group G we denote the Lie algebra g. The Special
Orthogonal group SO(3) has elements R ∈ SO(3) and acts
on q ∈ R3 by R(q) = Rq. The Special Euclidean group
SE(3) has elements P = (RP , xP ) ∈ SO(3)nR3 and acts
on q ∈ R3 by P (q) = RP q + xP . The Extended Special
Euclidean group SE2(3) has elements (A,w) ∈ SE(3)×R3

with group multiplication (A1, w1)·(A2, w2) = (A1A2, w1+
RAw2) [16]. The positive multiplicative reals MR(1) has
elements c > 0. The Scaled Orthogonal Transformations
SOT(3) has elements Q = (RQ, cQ) ∈ SO(3) ×MR(1)
and acts on q ∈ R3 by Q(q) = cQRQq [22].

For any Ω ∈ R3 define

Ω× :=

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .

Then the Lie algebra so(3) = {Ω× ∈ R3×3|Ω ∈ R3}, and

Ω×p = Ω× p = −p× Ω = −p×Ω,

for any Ω, p ∈ R3, where × is the usual cross product.
For any Ω, v ∈ R3 define U(Ω, v) ∈ se(3) such that for

any P = (RP , xP ) ∈ SE(3),

Ṗ = PU(Ω, v) ⇔ ṘP = ṘΩ× and ẋP = RP v.

A (right) group action of a Lie group G on a smooth
manifold M is a smooth function φ : G×M →M satisfying

φ(XY, ξ) = φ(Y, φ(X, ξ)), φ(id, ξ) = ξ.

Given such a map, we denote by φX and φξ the partial maps

φX : M →M , φX(ξ) := φ(X, ξ),

φξ : G→M , φξ(X) := φ(X, ξ).

Denote the 2-sphere by S2 = {y ∈ R3 ‖y‖ = 1}. Let
πS2(q) := q/‖q‖ be the sphere projection for all q ∈ R3 with
q 6= 0. For e1 = (1, 0, 0) let ϑe1

: Ue1
⊂ S2 → R2 be the

stereographic projection as in [24, Chapter 1], and for every
η ∈ S2 \ {e1}, define ϑη : Uη ⊂ S2 → R2 by

ϑη(y) := ϑe1
(y − 2ζζ>y), ζ := πS2(e1 − η), (1)

where Uη = S2 \ {−η}. Then for each η ∈ S2, ϑη is a local
coordinate chart with ϑη(η) = 0.

Let

S+(n) = {S = S> ∈ Rn×n|x>Sx > 0, for all x 6= 0 ∈ Rn}

denote the set of positive definite symmetric matrices of
dimension of n.



III. PROBLEM DESCRIPTION

Choose an arbitrary inertial reference frame {0}, and
consider a robot equipped with an IMU and a camera, both
of which are rigidly attached. For simplicity we identify the
IMU frame {I} with the robot’s body-fixed frame {B}. The
inertial coordinates for the visual inertial SLAM problem are

(P, v, p1, ..., pn) ∈ SE(3)× R3 × (R3)n, (2)

where,

• P = (RP , xP ) ∈ SE(3) is the pose of the IMU {B}
with respect to the inertial frame {0},

• v ∈ R3 is the linear velocity of the robot in the body-
fixed frame {B},

• pi ∈ R3 is the coordinates of landmark i in the inertial
frame {0}.

We frequently use the notation (P, v, pi) ≡ (P, v, p1, ..., pn)
as shorthand. To ensure that the visual measurements are
always well defined we assume that the trajectory considered
never passes through an exception set E ⊂ SE(3) × R3 ×
(R3)n corresponding to all situations where the camera
centre coincides with a landmark point. To formalise this,
we define the visual inertial SLAM (VI-SLAM) total space

T VI
n (3) := SE(3)× R3 × (R3)n −E

and consider the visual inertial SLAM problem on T VI
n (3).

Note that T VI
n (3) is an open subset of a smooth manifold and

as such is itself a smooth manifold.
Let the acceleration due to gravity in the inertial frame

{0} be ge3, where g ≈ 9.81 m/s2 and e3 ∈ S2 is
standard gravity direction in the inertial frame. The ideal
IMU measurements are (Ω, a) ∈ R3 × R3, the angular
velocity and linear acceleration of the IMU, respectively. The
VIO system dynamics are

d

dt
(P, v, pi) = f(Ω,a)(P, v, pi), (3)

Ṗ = PU(Ω, v), v̇ = −Ω×v + a− gR>P e3, ṗi = 0.

The camera measurements are modelled as n bearing
measurements of the landmarks pi in the camera frame {C}
on the manifold N V

n(3) := (S2)n where the superscript “V”
stands for visual measurements. Let TC ∈ SE(3) denote
the pose of the camera frame {C} with respect the body
frame {B}. We do not consider the online calibration of
TC in the present work. Then the measurement function
h : T VI

n (3)→ N V
n(3) is given by

h(P, v, pi) :=
(
h1(P, v, pi), ...h

n(P, v, pi)
)
, (4)

hk(P, v, pi)) := πS2

(
(PTC)−1(pk)

)
.

Modelling the bearing measurements directly on the sphere
rather than the image plane enables the proposed system to
model a wide variety of monocular cameras.

A. Invariance of Visual Inertial SLAM

Let e3 be the standard gravity direction and define the
semi-direct product group

S1 ne3 R3 := {(θ, x) θ ∈ S1, x ∈ R3},

with group product, identity and inverse

(θ1, x1) · (θ2, x2) = (θ1 + θ2, x1 +Re3
(θ1)x2),

idS1ne3R3 = (0, 03×1),

(θ, x)−1 = (−θ,−Re3
(θ)x),

where Re3(θ) ∈ SO(3) is the anti-clockwise rotation of an
angle θ about the axis e3. Then S1 ne3 R3 may be identified
with the subgroup

SEe3
(3) := {(R, x) ∈ SE(3) Re3 = e3} ≤ SE(3).

Define α : SEe3
× T VI

n (3)→ T VI
n (3) by

α(S, (P, v, pi)) := (S−1P, v, S−1(pi)).

Then α is a (right) group action of SEe3(3) on T VI
n (3). For

a given S ∈ SEe3(3), the action α(S, ·) represents a change
of inertial reference frame from {0} to {1} where S is the
pose of {1} with respect to {0}. Moreover, any change of
reference S ∈ SEe3

(3) leaves the direction of gravity e3

unchanged.
Proposition 3.1: The system function (3) and measure-

ment function (4) are invariant with respect to α, that is,

f(Ω,a)(α(S, (P, v, pi))) = dαSfΩ,a(P, v, pi),

h(α(S, (P, v, pi))) = h(P, v, pi),

for any S ∈ SEe3
(3).

A proof is provided in Appendix I.

B. VI-SLAM Manifold

We exploit the invariance of the dynamics and measure-
ments to propose a new state space where the system is
fully observable. Given any (P, v, pi) ∈ T VI

n (3), define the
equivalence class

[P, v, pi] = {α(S, (P, v, pi)) S ∈ SEe3
(3)}.

Since α is a proper group action the associated quotient is
a smooth manifold that we term the Visual Inertial SLAM
(VI-SLAM) manifold

M VI
n (3) := T VI

n (3)/α = {[P, v, pi] (P, v, pi) ∈ T VI
n (3)},

with projection map π(P, v, pi) := [P, v, pi]. The induced
system and measurements functions on M VI

n (3) are well-
defined due to their invariance with respect to α. Transfor-
mation by the subgroup SEe3

(3) corresponds directly the
unobservable states in the inertial SLAM coordinates [14].
It follows that the SLAM problem posed on the VI-SLAM
manifold is fully observable since the quotient operation
factors out the unobservable states while preserving the
observable information.



IV. EQUIVARIANT FILTER FOR VI-SLAM

A. Symmetry of VI-SLAM

The Equivariant Filter (EqF) [23] exploits symmetries of
systems on homogeneous spaces to design a filter about a
fixed linearisation point on the state manifold with a constant
output linearisation.

Let SLAMVI
n(3) = SE2(3) × SOT(3)n denote the VI-

SLAM Group [22] with group product, identity and inverse
given by

(A1, w1, Q1
i ) · (A2, w2, Q2

i ) = (A1A2, w1 +RA1w2, Q1
iQ

2
i ),

id = (I4, 03×1, (I3)i), (A,w,Qi)
−1 = (A−1,−RAw,Q−1

i ).

This Lie group is a symmetry group that acts transitively
on M VI

n (3) and N V
n(3) in a compatible manner that makes

both the system function f (3) and the output function h (4)
equivariant. The following lemmas are proved in Appendix
I.

Lemma 4.1: The map Φ : SLAMVI
n(3)×T VI

n (3)→ T VI
n (3)

defined by

Φ((A,w,Qi), (P, v, pi))

:= (PA,R>A(v − w), PATCQ
−1
i T−1

C P−1(pi)), (5)

is a transitive (right) group action. Moreover, the induced
action φ : SLAMVI

n(3)×M VI
n (3)→M VI

n (3), given by

φ((A,w,Qi), [P, v, pi]) := [Φ((A,w,Qi), (P, v, pi))], (6)

is well-defined.
Lemma 4.2: The map ρ : SLAMVI

n(3)×N V
n(3)→ N V

n(3)
defined by

ρ((A,w,Qi), (ηi)) := (R>Qi
ηi), (7)

is a (right) group action. Additionally, the measurement
function (4) is equivariant with respect to the actions φ (6)
and ρ, that is,

h(φ((A,w,Qi), [P, v, pi])) = ρ((A,w,Qi), h([P, v, pi])),

for all (A,w,Qi) ∈ SLAMVI
n(3) and [P, v, pi] ∈M VI

n (3).
The existence of a transitive action by the VI-SLAM group

on the VI-SLAM manifold guarantees the existence of an
equivariant lift [25]. That is, the system dynamics may be
lifted to the symmetry group.

Lemma 4.3: The map Λ : T VI
n (3) × (R3 × R3) →

slamVI
n(3), given by

Λ((P, v, pi), (Ω, a)) (8)

:=

(
U(Ω, v), −a+ gR>P e3,

(
ΩC +

q×i vC
‖qi‖2

,
q>i vC
‖qi‖2

)
i

)
,

qi := (PTC)−1(pi), (ΩC , vC) := Ad−1
TC

(Ω, v),

is a lift [25] of the system function (3). That is,

DE |idφ(P,v,pi)(E)Λ((P, v, pi), (Ω, a)) = f(Ω,a)(P, v, pi).

Moreover, the induced map Λ : M VI
n (3) × (R3 × R3) →

slamVI
n(3) is well-defined and also a lift for the system on

the VI-SLAM manifold.

B. Origin Choice and Local Coordinates

The EqF design procedure requires a choice of origin
configuration and local coordinates. Let Ξ◦ = (P ◦, v◦, p◦i ) ∈
T VI
n (3) denote a fixed origin configuration and set ξ◦ =

[Ξ◦] = [P ◦, v◦, p◦i ] ∈ M VI
n (3). The filter state for the EqF

is an element of the VI-SLAM group, X̂ ∈ SLAMVI
n(3),

and the associated state estimate is obtained by applying the
group action Ξ̂ = Φ(X̂,Ξ◦) (5) [25].

Choose the map ε : Uξ◦ ⊂M VI
n (3)→ R5+3n defined by

ε([P, v, pi]) :=


ϑR>

P◦e3
(R>P e3)

v − v◦
T−1
C (P−1(p1)− P ◦−1(p◦1))

...

T−1
C (P−1(pn)− P ◦−1(p◦n))

 , (9)

to be the coordinate chart for M VI
n (3). Let (y◦i ) = h(ξ◦).

Choose the map δ : U(y◦i ) ⊂ N V
n(3)→ R2n defined by

δ(y1, ..., yn) :=
(
ϑy◦1 (y1), ..., ϑy◦n(yn)

)
, (10)

to be the local coordinate chart for N V
n(3) where ϑ is the

stereographic projection of the sphere (1). Note that ε(ξ◦) =
0 and δ(y◦i ) = 0.

C. Input Bias

We model real-world IMU measurements as having a
constant (or slowly time-varying) bias,

Ωm = Ω + bΩ, am = a+ ba,

ḃΩ = 0, ḃa = 0,

where Ωm, am ∈ R3 are the measured angular velocity and
linear acceleration, respectively, and bΩ, ba ∈ R3 are the
biases. Let b = (bΩ, ba) ∈ R6.

D. EqF with Bias Dynamics

Let X̂ ∈ SLAMVI
n(3) be the observer state [25] and let

b̂ = (b̂Ω, b̂a) ∈ R6 be the estimated bias with dynamics

˙̂
X = X̂Λ(φ(X̂, ξ◦), (Ω̂, â))−∆X̂, X̂(0) = id,

˙̂
b = −β, b̂(0) = 0,

where Ω̂ = Ωm − b̂Ω, â = am − b̂a and ∆ ∈ slamVI
n(3) and

β ∈ R6 are correction terms.
Let A◦t , Bt, C

◦ be the EqF state, input, and output ma-
trices, respectively, as described in Appendix II. Let Σ ∈
S+(11 + 3n) be the Riccati term of the EqF with bias, with
dynamics

Σ̇ =

(
0 0
−Bt At

)
Σ + Σ

(
0 −B>t
0 A>t

)
+

(
0 0
0 BtRtB

>
t

)
+ Pt − Σ

(
0 0

0 C◦>Q−1
t C◦

)
Σ, Σ(0) = Σ0

where Σ0 ∈ S+(11 + 3n) is the initial Riccati term, and
Pt ∈ S+(11 + 3n), Rt ∈ S+(6), and Qt ∈ S+(2n) are
positive definite gain matrices.

Let ξ = [P, v, pi] ∈ M VI
n (3) denote the true state of

the system and let e = φ(X̂−1, ξ) ∈ M VI
n (3) denote the



global EqF error. The correction term of the EqF with bias
is determined by the lift of the Kalman update to the Lie-
group. That is

∆ := DE |idφξ◦(E)† ·Dξ|ξ◦ε(ξ)−1Γ, (11)(
β
Γ

)
:= Σ

(
0 C◦>

)
Q−1
t δ(ρ(X̂−1, h(ξ))), (12)

where DE |idφξ◦(E)† is a suitably chosen right-inverse of
DE |idφξ◦(E). Then the EqF state estimate is given by

(P̂, v̂, p̂i) := Φ((Â, ŵ, Q̂i), (P
◦, v◦, p◦i )). (13)

E. Bundle Lift

The EqF is designed directly on the VI-SLAM manifold
to overcome the unobservability of the problem. However,
in practice it is usual to report the state as an element of
the total space. Moreover, in lifting to the total space it is
desirable to do so in such a manner to minimize the error
introduced into the trajectory estimation. The correction term
is therefore lifted from the manifold to the total space by
minimising the motion of landmark points with respect to
the current choice of inertial frame, subject to a weighting
term derived from the EqF Riccati matrix Σ.

Define the weighted cost function J : T(P̂,v̂,p̂i)
T VI
n (3) →

R+ by

J(P̂U, uv, upi) :=
∥∥∥dε · dπ · dΦ−1

(Â,ŵ,Q̂i)
(0, 0, upi)

∥∥∥2

Σ
,

where Σ is the EqF Riccati term, and ‖·‖Σ is the Mahalanobis
norm.

Let Γ ∈ R5+3n be the correction term defined in (11). The
correction on the total space Γ′ ∈ T(P◦,v◦,p◦i )T VI

n (3) is the
solution of the optimisation problem

minimise J(DΞ|(P◦,v◦,p◦i )Φ(Â,ŵ,Q̂i)
(Ξ)(Γ′)),

subject to Dξ|[P◦,v◦,p◦i ]ε(ξ) ·DΞ|(P◦,v◦,p◦i )π(Ξ)Γ′ = Γ.

This may be solved using weighted linear least-squares.
Finally, the correction term ∆ ∈ slamVI

n(3) is chosen by

∆ = DE |idΦ(P◦,v◦,p◦i )(E)†Γ′,

where DE |idΦ(P◦,v◦,p◦i )(E)† is an arbitrary fixed right-
inverse of DE |idΦ(P◦,v◦,p◦i )(E).

V. EXPERIMENTS

To demonstrate practical performance, we evaluated the
proposed EqF on a number of sequences from the EuRoC
dataset [26]. Vision measurements were obtained by ap-
plying OpenCV functions goodFeaturesToTrack and
calcOpticalFlowPyrLK to detect and track features.
The maximum number of features was kept to 50, and new
features were detected whenever the number of features
being tracked fell below 40. The EqF gain matrices and
parameters were kept consistent across all trials, and the
observer dynamics were discretised using Euler integration.
The proposed system was implemented in c++ and our code
is available online1.

1https://github.com/pvangoor/eqf_vio

We limited our attention to the easy and medium se-
quences in the Vicon rooms, as we found the Machine
Hall and “hard” sequences to be too challenging for our
vision processing front-end to track features reliably. Figure
1 shows the estimated trajectories compared with the ground
truth. Table I shows the Root Mean Square Error (RMSE)
between ground truth trajectory of the robot and the esti-
mated position reported by our system for each sequence.
The RMSE of popular EKF-based VI-SLAM solutions SVO-
MSF, MSCKF, and ROVIO (obtained from [2]), and the
invariance based R-UKF-LG (obtained from [27]) are shown
for comparison. Due to significant differences in system
architectures, the tuning parameters for each system cannot
be compared directly, and this contributes to the differences
in outcomes in Table I.

RMSE (m)
R-UKF-LG2 SVO-MSF MSCKF ROVIO EqF

[27] [8] [7] [6] *
V1 01 0.55 0.40 0.34 0.10 0.07
V1 02 0.40 0.63 0.20 0.10 0.11
V2 01 0.37 0.20 0.10 0.12 0.08
V2 02 0.47 0.37 0.16 0.14 0.13

TABLE I
COMPARISON OF RMSE ON THE EUROC DATASET.

The proposed EqF clearly outperforms competitor EKF-
based algorithms shown in Table I. ROVIO [6] achieves the
lowest RMSE on V1 02, likely thanks to the tight-coupling
between the vision front-end and the filter back-end. Figure 2
shows the distribution of the error of the trajectory estimated
by our system for each sequence.

V1 01 V1 02 V2 01 V2 02
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Fig. 2. The distributions of position error of the estimated trajectories.

The pie chart in Figure 3 shows the mean processing
time per frame of each component of the full system. The
processing times were recorded on a desktop computer with
an Intel R©CoreTMi7-8700 CPU @ 3.20GHz × 12 and 16GB
of RAM. The total processing time per frame was recorded
at 5.4ms or 183.7Hz. Of the total time, the vision front-end
consumes 4.2ms and the filter consumes 1.2ms. This high
speed combined with the high accuracy reported in Table I

2The R-UKF-LG [27] uses both the left and right cameras for stereo
vision rather than monocular vision.

https://github.com/pvangoor/eqf_vio
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Fig. 3. The mean processing time per frame for each component of the
proposed system.

clearly demonstrate the real-world potential of the proposed
system.

VI. CONCLUSION

This paper makes the following contributions.

• The VI-SLAM manifold is constructed as a state space
for visual inertial SLAM where the unobservability of
the system associated with a change of reference frame
is factored out.

• The VI-SLAM group is developed and shown to act
equivariantly on the VI-SLAM total space, manifold and
output space.

• An Equivariant Filter (EqF) is designed according to
[23], and coupled with a simple vision processing front-
end to achieve state-of-the-art results on the EuRoC
MAV dataset [26].

APPENDIX I
PROOFS

Proof of Proposition 3.1: Choosing S ∈ SEe3(3),
(P, v, pi) ∈ T VI

n (3) and (Ω, a) ∈ R3 × R3 arbitrary, one
has

f(Ω,a)(α(S,(P, v, pi))) = f(Ω,a)(S
−1P, v, S−1(pi)),

=
(
S−1PU, −Ω×v + a− gR>PRSe3, 0

)
,

=
(
S−1(PU), −Ω×v + a− gR>P e3, 0

)
,

= dαSfΩ,a(P, v, pi),

as required. Similarly, for any k, the partial measurement
function hk (4) satisfies

hk(α(S, (P, v, pi))) = hk(S−1P, v, S−1(pi)),

= πS2

(
(S−1PTC)−1S−1(pk)

)
,

= πS2

(
(PTC)−1(pk)

)
,

= hk(S, (P, v, pi)),

and the invariance of the full measurement function h follows
immediately.

Proof of Lemma 4.1: The proof that Φ is a group
action closely follows that of [22, Lemma 4.2], and has been

omitted from this paper to save space. To see that φ is well-
defined, observe that

φ((A,w,Qi), [S
−1P, v, S−1(pi)])

= [Φ((A,w,Qi), (S
−1P, v, S−1(pi)))],

= [S−1PA,R>A(v − w), S−1PATCQ
−1
i T−1

C P−1SS−1(pi)],

= [PA,R>A(v − w), PATCQ
−1
i T−1

C P−1(pi)],

= [Φ((A,w,Qi), (P, v, pi))],

= φ((A,w,Qi), [P, v, (pi)]),

as required.
The proofs of Lemmas 4.2 and 4.3 closely follow proofs

previously published in [22] and have been omitted from this
paper to save space.

APPENDIX II
EQF MATRICES

Here we present the state, input, and output matrices of
the EqF proposed in Section IV. Let (P ◦, v◦, p◦i ) ∈ T VI

n (3)
denote the origin coordinates, let (Â, ŵ, Q̂i) ∈ SLAMVI

n(3)
denote the observer state, let (P̂, v̂, p̂i) denote the esti-
mated state as in (13), and let the input to the system
be (Ω, a) ∈ R3 × R3. Define (Ω̂C , v̂C) := Ad−1

TC
(Ω, v̂),

q̂i := (P̂ TC)−1(p̂i).
The EqF state matrix A◦t is given by [23, Lemma A.1],

A◦t =


0 0 0 · · · 0

−gDz|0ϑ−1
e3

(z) 0 0 · · · 0

0 −Q̂1R
>
ÂTC

Aq̂1 0 0

...
... 0

. . . 0

0 −Q̂nR>ÂTC
0 0 Aq̂n

 ,

where,

Aq̂i := −‖q̂i‖−2Q̂i(q̂
×
i v
×
C − 2vC q̂

>
i + q̂iv

>
C )Q̂−1

i .

The EqF input matrix Bt is given by

Bt = Dξ|[P◦,v◦,p◦i ]ε(ξ) ·Dξ|[P̂,v̂,q̂i]φ(Â,ŵ,Q̂i)−1(ξ)

·DE |idφ[P̂,v̂,q̂i]
(E) ·Du|(Ω,a)Λ([P̂, v̂, q̂i], u),

=


Dη|R>

P◦e3
ϑR>

P◦e3
(η)RÂ(R>

Â
e3)× 0

RÂv̂
× RÂ

Q̂1(q̂×1 R
>
TC

+R>TC
x×TC

) 0
...

...

Q̂n(q̂×nR
>
TC

+R>TC
x×TC

) 0

 .

Let q◦i = (P ◦TC)−1(p◦i ) and (y◦i ) = h(P ◦, v◦, p◦i ). Then
the (constant) EqF output matrix C◦ is given by

C◦ =


0 0 C◦1 0 · · · 0
...

... 0
. . .

...
...

...
...

. . . 0
0 0 0 · · · 0 C◦n

 ,

where each C◦i ∈ R2×3 is given by

C◦i = Dη|y◦i ϑy◦i (η)
1

‖q◦‖

(
I3 −

q◦q◦>

q◦>q◦

)
.
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