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Abstract

Communication between current military real-time sys-
tems and future interconnection of general purpose, embed-
ded real-time systems will often require wireless commu-
nications. However, there has been little work undertaken
to offer support for real-time applications on wireless net-
works. We present and evaluate three protocols; variations
of two published protocols by Paterakis and Gallager as
well as our new one, the Sliding Partition (SP) collision res-
olution algorithm (CRA). In a real-time setting, the modified
Gallager CRA consistently performs worst of the three we
consider. We observe that when the deadline range is small,
the Sliding Partition CRA performs best. When the deadline
range is large, however, the Paterakis CRA performs slight-
ly better than the SP CRA. Both analytic and simulation
results are obtained to study the maximum input traffic rates
that can be sustained for various laxities, delay bounds, and
message loss rates.

1. Introduction

Applications directly interacting with the world often
must respond to changes within some predetermined amount
of time. Such systems are classified as either hard or soft
real-time systems. A hard real-time system requires that
all deadlines are always met because of the importance of
the data, e.g., aeronautics and nuclear power control. Soft
real-time systems can afford some deadlines to slip.

Data networks supporting real-time systems, whether
hard or soft, are usually implemented as nodes intercon-
nected with cable. Using copper or fiber cable is desirable
because of their low error rates and high speeds. How-
ever, by the nature of their functional requirements, real-
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time systems are often embedded and autonomous or semi-
autonomous. When the need arises to interconnect these for
high level coordination, it is not feasible, or even possible
in many cases, to use cable. Wireless communication is the
only alternative.

As an example, in military environments and especially
on the battlefield, data communications have a range of
priority levels with messages of each level having some
independently derived deadline. Additionally, all nodes are
mobile, leaving wireless as the only option.

In these situations, the data shared is often high level
for coordination of distinct but cooperating systems rather
than instrumental to the interconnection of nodes to build
a single real-time system. Occasionally missed deadlines
are not detrimental to overall functionality. Thus, this ar-
rangement can be viewed as a loosely coupled soft real-time
system. This is convenient because regardless of system
requirements, the noisy, error-prone wireless environment
is not suitable for implementing a hard real-time system.

Also noteworthy is that wireless systems in general offer
lower bandwidth than cable based systems. As a result,
packet transmission times are longer. For slotted systems,
as we will consider, this means slots are longer as well.
This affects transmission scheduling in the sense that while
a packet deadline may be far off in terms of time, it might
only represent a small number of slots. We take this into
account in the models described below.

Ultimately, it is the lowest layer of the protocol stack
which provides timely access to the communications medi-
um. We consider several media access protocols for soft
real-time systems implemented on a slotted radio channel
with binary feedback and assume feedback is provided out
of band, e.g., on another frequency.

Because each application has its own requirements for
a minimum acceptable level of protocol performance, our
interest is, given these requirements, to determine the maxi-
mum traffic rate the system can handle. Knowing the perfor-
mance for a range of traffic rates will allow the protocol to
be tailored for use by a variety of soft real-time applications
without designing to the lowest common denominator, i.e.,



the safest, lowest loss, and lowest throughput system.

The obvious disadvantage to using existing, general pur-
pose random access schemes for real-time communication is
that the worst case channel access time is unbounded due to
packet collisions. Typical random access protocols for both
wired and wireless LANs react to collisions by assigning a
random waiting time to a collided packet. The problem is
compounded by the fact that general algorithms do not take
packet transmission deadlines into account.

Approaches to limiting or removing these shortcomings
for time constrained communication on random access chan-
nels have concentrated on two methods: the use of virtual
time clocks, and window splitting techniques. Virtual time
clocks were first proposed by Molle and Kleinrock [6] and
based on message arrival time. This has the advantage of
making transmission of queued messages fairer. The method
was adapted by Ramamritham and Zhao [9] to take into ac-
count various time related properties of a packet for soft
real-time systems and shown via simulation to work better
than protocols not designed for real-time use. Subsequent-
ly, Zhao et al. [10] proposed a window splitting protocol
which always performed in simulation at least as well as the
virtual time protocols and often better. Less complex win-
dow splitting algorithms are presented for both hard and soft
real-time systems by Arvind [1] where protocol operations
are simulated and some worst case performance analysis is
also presented.

In the area of queueing analysis, Georgiadis et al. [4]
develop a straightforward, general method of delay analysis
using regenerative properties of random multiple access al-
gorithms. This is elaborated on by Paterakis et al. [7] where
they present and analyze a simple protocol appropriate for
limited types of soft real-time systems. We extend Pater-
akis’ analytic technique in this paper for a more detailed
and complex analysis of three protocols suitable for use in
wireless soft real-time environments. While we compare
published protocols to one we develop, note that even the
published ones require modifications, as will be described,
to operate in general real-time environments.

The first analyzed is a variation of that introduced by Pa-
terakis. His analysis, though, makes the assumption that all
packets are assigned the same deadline upon arrival at the
transmission queue. This is unrealistic for general real-time
systems, so we make the change of assigning a deadline
from a distribution. We do the same for the other two proto-
cols. The next considered is a variation of the famous FCFS
Gallager algorithm [3], [2] modified by us with binary feed-
back, strict delay bounds, and laxity ranking. This is similar
to one studied by Arvind [1] but his does not incorporate
a delay bound. Finally, we present a new protocol, the S-
liding Partition (SP) CRA, that takes deadlines into account
yet remains algorithmically simple.

2. Algorithm

In these protocols, a packet has a single property of in-
terest, its laxity. Laxity is the maximum amount of time
that can elapse prior to transmission, after which the pack-
et will not reach its destination on time (we only consider
single-hop radio channels in this analysis). Once a laxity is
assigned to a packet, at each slot boundary it is decrement-
ed and the packet discarded should the laxity reach zero.
The channel is accessed in a slotted manner by one slot
long packets with binary (collision/non-collision) feedback.
Collisions are resolved using algorithms described below.

When two or more nodes transmit at once and collide, the
collision resolution algorithm (CRA) commences and only
nodes involved in the collision may contend for the channel.
Only after all collided packets have been either successfully
transmitted or else discarded due to missed deadlines, can
other nodes again contend for the channel. Note that packets
are never delivered late. They are either transmitted in a
timely manner or dropped. At this low level, there are two
competing viewpoints: the system as a whole would like
short collision resolution intervals (CRIs), while individual
packets want to be transmitted regardless of delay as long
their deadlines are met. We balance these views by outright
dropping of late packets. A higher protocol layer should
decide if it is worth retransmitting late or not, especially in
the case of multiple packets making up a single higher layer
message.

Simple notation is used to describe each protocol. Letting���
denote the feedback corresponding to slot � , �������

if
there was a collision in slot � , otherwise

���	��
��
if there

was no collision in that slot. A system parameter  limits
the length of a CRI. If the CRI is ongoing for  slots, all
involved packets are dropped and the CRA is reset. During
a CRI, any packet whose laxity drops to 0 is discarded.

2.1. Paterakis CRA

The protocol put forth by Paterakis et al. [7] is elegantly
simple. Each node has a counter whose value may be either
1 or 2, but can only transmit when the counter value is 1.
Upon collision, a collision resolution interval (CRI) begin-
s. During the CRI, after each collision all colliding nodes
flip coins. Based on the outcome, counters are assigned a
new value of 1 on, say, heads, and 2 on tails. After each
noncollision slot, all nodes in the CRI set the counter to 1
and transmit. A CRI ends when there are two consecutive
noncollision slots.1

A node’s counter at time � is denoted by � � . With this
notation, we can more rigorously describe the algorithm.

1Most window splitting techniques split based on some parameter such
as arrival time, laxity, etc. When two packets tie, i.e., have the same value
for that parameter, randomness is introduced to artificially separate the
values. Paterakis simply uses this technique at the outset.



1. A packet is successfully transmitted if and only if � � �
1 and

� � � 
�� �
2. The transitions are:

� If
� � � 1

� 
��
and � � � 1

�
2, then � � � 1 �

� If
� � � 1

� �
and � � � 1

�
2, then � � � 2 �

� If
��� � 1

� �
and � � � 1

�
1, then � � � 1 with

probability 0.5 and � � � 2 with probability 0.5.

2.2. Modified Gallager CRA

During a CRI in our modified version of the Gallager
CRA, an arrival time based window of initial length ∆ slots
is used. If a collision occurs, the packets are ordered, left
to right, from lowest laxity to highest, in a laxity window.
Only packets whose laxities fall within the laxity window
may transmit. If another collision occurs, the laxity window
is split in half, and the CRA recurses first on the left half and
then on the right. The CRA behaves similarly to the classical
FCFS splitting algorithm [2] with a few differences: packets
in a window following a collision are ordered by laxity rather
than by queue arrival time, and feedback is binary rather than
ternary. We further impose a bound  which is the maximum
number of slots a CRI may comprise. If  slot times are
reached, all packets involved in the CRI are dropped, and
the algorithm is reset. This CRA is analyzed in detail in [5]
for constant initial laxities.

Because of the laxity ordering, the first successful trans-
mission during a CRI will be the lowest laxity packet, the
second will be the second lowest, and so on, guarantee-
ing a laxity ordered transmission schedule appropriate in a
real-time setting.

We denote the position of the left edge of the window at
time � as � � and its length, in slots, as � � . Finally,

� �
can

take on the value of � or � indicating whether the collision
resolution algorithm is in the left or right subwindow. By
convention, the algorithm is initially in the right half. At
time � � 0 the system is empty and that slot has a feedback
value of

�
0
� 
��

. Subsequently,

1. If collision resolution is not in progress, then a node
with a packet which arrived in slot �
	 1 may transmit
it in the current slot � .

2. If collision resolution is in progress:

� If
� � � 1

� 
��
and

� � � 1
� � , then � � � � � � 1 �

� � � 1 � � � � � � � 1, and
� � � � .

� If
� � � 1

� 
��
and

� � � 1
� � , then � � � � � � 1 �

� � � 1 � � � � min  2 � � � 1 � min �� � ∆ ��� , and
� � � � .

Lag � is discussed shortly in the Analysis section.
� If

��� � 1
� �

, then � ��� � � � 1 � � � � 1
2 �
� � 1, and� � � � .

2.3. Sliding Partition CRA

The Sliding Partition (SP) protocol has some properties
of each of the above CRAs. During the CRI, packets are
ordered by laxity, lowest to highest, from left to right. Only
packets whose laxities fall within the current laxity window
can transmit. However, after a collision the window is not
recursively split. The left window is shrunk by half with
the other portion returned to the right window. Until a
noncollision occurs, the left window is successively split in
two while the right window successively expands. After a
noncollision, all packets in the right window transmit. When
∆ is appropriately chosen, we expect most collisions to be
of multiplicity two. As in the Paterakis CRA but unlike the
Gallager CRA, a CRI end is signaled by two consecutive
noncollision slots or when the time bound is reached.

We use the same notation as with the Gallager CRA. By
convention, the algorithm is initially in the right half.

1. If collision resolution is not in progress, then a node
with a packet which arrived in slot ��	 1 may transmit
it in the current slot � .

2. If collision resolution is in progress:

� If
��� � 1

� 
��
and

� � � 1
� � , then � � � � � � 1 �

� � � 1 � � � � min  ∆ � ����	�� � � 1, and
� � � � .

� If
��� � 1

� 
��
and

� � � 1
� � , then CRI terminates.

� If
� � � 1

� �
, then � ��� � � � 1 � � � � 1

2 �
� � 1, and� � � � .

3. Analysis

Regardless of which CRA is used, at any time instant
during a CRI, an initial collision that happened some while
ago is being resolved. This means that there is a lag of �
units between “now” and the period of time currently being
examined by the CRA. The lag � is important in a real-time
environment because the lag induced by a CRI means that,
for the subsequent CRI, only �	�� slots remain before
the CRA is reset dropping all untransmitted packets. In
addition, the width � of a window plays a crucial role in the
length of a CRI. Short initial windows waste time because
many will be empty, while long ones potentially encompass
several packets leading to still more collisions.

Figure 1 illustrates some of these variables and how they
are related. In the figure, the current moment of the illus-
tration is time � and because of some previous collision, the
current lag is � slots. The previous CRI completed at time
� 1. Anything with a smaller laxity cannot be transmitted
before its deadline and so is rejected, or discarded, outright.
Similarly, to successfully transmit all packets in the current
window, the CRI must complete within the next ��� � �	��
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Figure 1. Relation between some variables in
algorithm.

slots. The variable ����� � is defined in detail in the Appendix
but is simply the length of the CRI which begins at time �
and ends at time ��� .

In the subsequent paragraphs we present the technique for
analysis of time bounded CRAs with packets having variable
laxity assignments. See Paterakis et al. [7] for the presenta-
tion of the original, fixed laxity assignment technique used
to analyze their protocol, or [5] for our first extensions to
analyze the more involved fixed initial laxity, time bounded,
and laxity ordered Gallager CRA.

3.1. Notation

In this analysis, we make the assumption that initial pack-
et laxities are drawn from a uniform distribution between 2
and  � inclusive. Two is the smallest since there is always a
one slot feedback delay plus the one slot to transmit. Consid-
ering a Markov chain whose state space is the set of integers
representing possible lag values, we use lags of one slot as
regeneration points. Subsequent analysis is based on one
cycle of the regenerative stochastic process.

Two considerations vital to successful transmission of a
packet are the current lag � and the number of slots � to
be examined. Appropriately, the following variables are
subscripted with this information.


 ��� � : Number of packets in window � with lag � which
are successfully transmitted during the cycle.� ��� � : Sum of delays after transmission of packets
in

 ��� � .� ��� � : Number of slots needed to examine � slots when

current lag is � slots.

In order to compute the expected values for the fraction
of traffic transmitted within the laxity bound and for the
delay experienced by successful transmissions, the variables
above must be incorporated into expressions which reflect
not just what occurs for given window/lag values but for a
full regenerative cycle. The subscript � on the following
variables represents what happens between the current lag
of � slots and when the lag next returns to 1. When ���� 1,
the algorithm is at some intermediate point in a regeneration

cycle.

� � : Given current lag of � , the number of slots to
return to lag of 1.	 � : Cumulative delay of packets transmitted during
the

� � slots.
 � : Number of packets transmitted during the
� � slots.

Also, given that some event occurs during a CRI of length � ,
we must multiply that event by the probability that the CRI
is actually of that length. We denote the form of the final
type of variable as:� ��� � � � � : Given that � slots are to be examined and

the lag is presently � slots, the probability
that the CRI will be � slots long.

Finally, to compute probabilities of a given number of pack-
ets arriving in some interval � , we assume a Poisson arrival
process.

Defining � ����� 
 1 � as the number of packets success-
fully transmitted in a cycle, and � ����� �

1 � as the expected
length of a cycle, then ����� is the traffic rate of successful
packets. This rate must be less than or equal to the origi-
nal rate � . Therefore, the fraction, � , of generated packets
which are successfully transmitted is

� � ������ �

If we next define � ����� 	
1 � as the cumulative expected

delay of all packets in the cycle, then the expected per packet
delay is simply  

� � � �
Taking expectations of expressions whose derivations are

omitted here, the following is obtained:

! � �
"##$ ##%
���'& �(� � � �*),+ �.- �0/132 2 1 4 �54 ∆ �! 1 � 768 � � � � . . . � ����'&

∆ � � � � ) + �.- �0/132 1 ∆ 9 �:9  �! � � ∆ ; 1 � �68 ∆ � � � . . . � �
where

! � �<��� �=� � and �=� is one of the random variables� � � 	 � � or 
 � ; � is the current lag in slots; and ∆ is the
maximum window width. The ellipses in the probability
terms indicate that for different protocols, more parameters
may be required. These are elaborated on in the Appendix.
Note that the system of equations is finite due to the bound
 . The recursions for

���'& � and
� ��> . . . � are also given in

the Appendix.
Compared to fixed laxity assignments, it is more complex

to analyze the variable laxity case because, during each slot
of a CRI involving ? packets, there is a possibility of one or
more packets expiring due to their variable initial deadlines.
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Figure 2. Relation between some variables
determining drop probability.

Incorporation of that requires expressions for the probable
deadline values assigned. For instance, as a CRI proceeds,
it becomes more and more likely that some of the collided
packets will expire before transmission. Consider either the
bounded Gallager or Sliding Partition CRAs. If the current
laxity window’s left edge is at laxity � and is of length � ,
the range � � � � � ��� is a subset of the maximum range � 2 � �� .
Furthermore, if, due to a current or previous CRI, only �
slots remain before the CRA resets, we must determine
the probability that a given packet will be dropped at the
end of the current slot. Looking at the interesting case of
 	�� 	 1 ��� � � � � ��� , i.e., only some packets in the current
laxity window can survive, Figure 2 shows the relationships
described. Packets whose initial laxities � 0 were such that
� 0 ���  		� 	 1 � � � �
� are not dropped. Packets with
� 0 ��� � �  	�� 	 1 � , however, are dropped at the end
of the current slot, so simply because a packet is in the
current laxity window does not mean it has a transmission
probability of 1.

4. Evaluation

In real-time systems it is important that the application’s
requirements be met by all layers of the protocol stack. As
mentioned, at the media access layer of a soft real-time
system, this translates to a guarantee that some minimum
fraction of traffic is in fact transmitted by its deadline. Call-
ing this design parameter  1, for the fraction of packets
transmitted successfully, results are presented below.

While it is the application which drives the choices for
maximum CRI length  and  1, the initial time window
width ∆ is a basic design parameter of the protocol itself.
That is, it is chosen from the optimization of the analysis of
the previous section. The window can range between zero
and  	 1. For this range we would like to find the maximum
system traffic rate, ��� , which allows successful transmission
of at least  1 of the traffic. Because of the complexity of
the expressions developed, analytic optimization is difficult.
For given values of ∆, however, the problem is simple to
solve numerically and, as pointed out by Paterakis et al. [7],
reduces to:

� �+ � � 1
�

sup �� : � +  ∆ � � ���� 1 � �
We present results only for ∆

�
2 � 5 though data has been

generated for various ∆ values which, through observation,

encompass the maximum throughputs. We also conducted
simulation studies of each protocol using Opnet, a network
simulation package. The simulations model the systems
with infinite user populations, thus offering more conserva-
tive performance results than the finite user case [8]. Each
simulation was run with 95% confidence intervals that the
fraction of successful transmissions � was within � 0 � 001 of
the steady state value. Input traffic rates, in units of pack-
ets/slot, ranged from 0.050 to 0.600 in increments of 0.01.
When window size ∆

�
2 � 5, Figure 7 shows overlaid graph-

s of analytic and simulation results for ���20 � 0 � 9 � Because of
the close correlation, other graphs show either only analytic
or only simulation results for the sake of readability. Fur-
thermore, due to the exponential nature of the equations,
it quickly becomes exceedingly difficult to obtain analytic
results as CRI bound  increases.

In Figure 3, three curves are graphed showing ���5 � 0 � 9 � For
a given offered load, the CRAs can be ranked, best to worst,
as SP, Paterakis, and Gallager. The corresponding delays
for these curves can be seen in Figure 4.

However, as the CRI bound increases to approximately
 � 8 � the three CRAs perform similarly. This is seen for
 � 10 in Figure 5 and corresponding delay curves in Fig-
ure 6. As  increases still more, the Gallager CRA performs
progressively worse as Figures 8 and especially 9 show. In-
terestingly, at the same time, the Paterakis CRA begins to
slightly outperform the SP CRA. Once the laxity range is
greater than eight slots or so, it appears that the window
splitting is time consuming enough that the Paterakis CRA
does better because, due to the random splitting, it tends to
more quickly separate packets. This is impressive consid-
ering that the Paterakis CRA does not take deadlines into
account. However, because deadlines are not considered in
the Paterakis CRA, the performance gap between it and the
SP CRA is not seen to widen as  further increases. The
advantage gained by the randomness of the Paterakis CRA
is equally offset by the advantage gained using deadlines in
the SP CRA.

5. Conclusions

To support a soft real-time system, a network must incor-
porate the concept of deadlines in all layers of the protocol
stack. This has been traditionally difficult to do in random
access protocols, where packet delays may be potentially
unbounded due to collisions. By assuming that a message
is dropped whenever its delay exceeds its initial laxity, and
by using a minimum rate of successful transmission, we
have shown that window-splitting protocols can be modi-
fied to work successfully in these environments. We have
presented an analytic model for such protocols which can be
used to determine proper operating parameters for specified
quality-of-service constraints.



Based on the results graphed for these specific protocol-
s, when packets have initial laxities encompassing a wide
range, the Paterakis CRA would be the best choice because
it is the simplest to implement. While it does not take
deadlines into account, its simplicity allows it to outperform
more complex real-time CRAs like the Gallager CRA and,
in some cases, the SP CRA. In systems, however, where a
small range of laxities are expected, the SP CRA performs
best. The Gallager CRA, aside from the fact that it does
not perform well, cannot be considered for implementation
because of its unrealistic assumptions, i.e., that nodes never
lose synchronicity and that the feedback channel is error
free. In contrast, the Paterakis and Sliding Partition CRAs
operate in ways allowing practical implementation in a wire-
less environment. Two consecutive noncollision slots signal
that a CRI is not in progress. If nodes lose synchronization
due to noisy feedback, or if they have not been monitoring
the channel because of temporary loss of connectivity, they
simply wait until observing two noncollision slots.

It would be interesting to modify these protocols to oper-
ate in a free access manner. That is, newly arriving packets
during a CRI could be transmitted, presumably allowing
still more low laxity packets to be successfully transmitted.
Also, the CRAs currently drop all packets in a window once
the left edge of the window reaches a laxity of one. This
is not necessary, and perhaps a performance improvement
would be seen if the CRI were modified to accommodate
this. Also interesting would be a hybrid version of the SP
algorithm which, when the laxity window is less than one
unit wide, would revert to the Paterakis CRA until the CRI
completes. Especially interesting to study, though, is the
initial laxity window for the SP CRA. Since it clearly out-
performs the other CRAs with laxity ranges of eight or less,
perhaps if the initial window were already split to that size,
it would perform still better. After a study of these varia-
tions, the most promising CRA will be implemented for use
in military battle environments.

A. SP Recursions

To calculate
���'& � and

�  . . . � , the expected value, given
that ? packets are within the current window, � slots is the
maximum length of the CRI, � is the left edge of the window,
and � its length, is

����� ��� � � �����
2 0

����� ��� � �? �  	�� � � � � �  ��� � �� � � �? !

with similar notation for
�  . . . � � and where

�
is one of


 � � �
or � � Note that the Paterakis recursions have no need for � and
� since a laxity window is not used. Because the algorithms
are independent of the window width � and current lag � ,
they are dropped from subsequent notation. The following

denotations are used:

�
�
� 	.� 
�� � �,��� � ��� � �? � � � � � � � �

and similarly for � � � 	.� 
�� � and �
�
� 	.� 
�� � �

A.1. Blocking Probability

The probability of a single packet being dropped can be
considered a Bernoulli trial. For a multiplicity ? collision,
trials for each of the ? packets yield a binomial distribution.
The variable  1 is the probability of dropping a single packet.

bin �? ���   � � � ��� ? ��� ��1  1 	� 1 �

�
� � �

In the following sections, it can be seen that most terms take
into account the fact that at each slot, 0 or more packets can
be dropped. For each summation involving the subscript � ,
for “blocked packet,” that result is multiplied by the prob-
ability, above, of that number of packets being blocked, or
dropped.

With maximum CRI length  and at most � slots re-
maining in CRI, the probability that a given packet’s initial
laxity � 0 will cause it to be dropped at the end of the current
slot is  1

� �  � 0 9 �  	 � 	 1 � �  	 � 	 1
�

Notice that there is no dependency on the laxity window.

A.2. Probable Length of CRI

� ����? � � � � � � � � 2 �
�
)�� � 1� 2 1 � � ���� )

�
� 2 0 � 7� 	 � �! 	 � � � 	 1 � � � � � 2 �� bin "! �#� � � � �� ) � �
�

� 2 0

� $� 	 1 �? 	%! 	 � � � 	 1 	 7� 	 � � �
� � � 2 �'& � � �)( � 	 � 2 �*& � � �)( �� bin �? 	+! ��� � � � 	 6 �

for ?-, 1 and with initial conditions
�  . . . � � 0 � for � � 0;�  . . . � � 1 � for ? 4 1 � � � 1;

�  . . . � � 1 � for � �
1;�  . . . � � 0 � for ? 4 1 � �., 1 �� 7�>�? � � � � � � � � 2 �
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A.3. Expected Length of CRI
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A.4. Packets Transmitted During CRI
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A.5. Cumulative Delay Experienced During CRI
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A.6. Paterakis and Gallager Recursions

The expected changes are made to the modified Paterakis
and Gallager expressions for � , � and � . Due to space
considerations, they are not presented.
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Figure 3. Analytic results for � �5 � 0 � 9 �
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Figure 4. Analytic results for � �5 � 0 � 9 �
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Figure 5. Simulation results for � �10 � 0 � 9 �
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Figure 6. Simulation results of delay for ���10 � 0 � 9 �
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Figure 7. Simulation and analytic results for� �20 � 0 � 9 for the Paterakis CRA.
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Figure 8. Simulation results for � �20 � 0 � 9 �
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Figure 9. Simulation results for � �30 � 0 � 9 �


