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We propose a distribution-free entropy-based methodology to calculate the expected value of an uncertainty

reduction effort and present our results within the context of reducing demand uncertainty. In contrast to

existing techniques, the methodology does not require a priori assumptions regarding the underlying demand

distribution, does not require sampled observations to be the mechanism by which uncertainty is reduced, and

provides an expectation of information value as opposed to an upper bound. In our methodology, a decision

maker uses his existing knowledge combined with the maximum entropy principle to model both his present

and potential future states of uncertainty as probability densities over all possible demand distributions.

Modeling uncertainty in this way provides for a theoretically justified and intuitively satisfying method of

valuing an uncertainty reduction effort without knowing the information to be revealed. We demonstrate

the methodology’s use in three different settings: 1) a newsvendor valuing knowledge of expected demand,

2) a short-lifecycle product supply manager considering the adoption of a quick response strategy, and 3) a

revenue manager making a pricing decision with limited knowledge of the market potential for his product.

Key words : Maximum Entropy Principle, Expected Value of Information, Distribution Free Models,

Demand and Inventory Management

1. INTRODUCTION

For decision makers facing uncertainty, a natural response is to collect more information. “Better

information, better decisions” is an often heard adage. At the same time, many managers lament

the loss of time spent in meetings upon meetings discussing information gathering efforts that

seem to have minimal impact on changing the decision at hand. This conflict between time and

information forces managers to

...navigate between two deadly extremes: on the one hand, ill-conceived and arbitrary decisions

made without systematic study and reflection (“extinction by instinct”) and on the other, a

retreat into abstraction and conservatism that relies obsessively on numbers, analyses, and

reports (“paralysis by analysis”) (?).

When a decision ultimately gets made, the implied belief is that expected costs of further uncer-

tainty reduction exceed the expected benefit, but justified and rigorous methods of calculating

1
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that benefit have proved elusive. To remedy this, we present a methodology for valuing the pursuit

of information and do so within the context of demand uncertainty reduction. Increased demand

volatility and increased global sourcing (i.e. long leadtimes) make information valuation particularly

relevant in this context. For example, to forecast demand for a new fashion apparel item, limited

demand information is available and a manager is naturally uncomfortable making a stocking deci-

sion for the entire selling season. In response, management might seek input from a consumer focus

group to reduce pre-season uncertainty or try to postpone production decisions to a time where

uncertainty is reduced. Valuing the associated improvement in expected outcome is required, but

how to value that effort remains an under-explored question in the literature.

Our valuation approach is to consider and compare the expected outcomes of two decision mak-

ers; the ignorant manager who has not pursued uncertainty reduction and the informed manager

who has. As opposed to using a single demand distribution, akin to work by ???, we assign a prob-

ability distribution over all possible demand distributions. The principle of maximum entropy (?)

is adopted for this probability assignment purpose. We refer to any specific demand distribution

as a belief and refer to a probability distribution over all possible beliefs as a belief distribution.

The constructed belief distribution is deemed most consistent with currently available information

and provides the foundation for creating probability distributions for potential future informa-

tion. Given a distribution over all potential future information, the informational advantage of the

informed manager over the ignorant manager can be calculated. To our knowledge, this is the first

paper to demonstrate application of the maximum entropy principle for valuation of uncertainty

reduction.

The largest advantage of this approach is that it enables numeric calculation of the expected value

of information without knowing the information that will be revealed. Existing valuation techniques

only provide bounds on the value of information and value-estimates driven by upper bounds

tend to overstate the information’s impact. Other numeric information valuation techniques in the

literature rely on a priori knowledge of the information that will be revealed; through comparison

of decisions made with and without the known information, information value can be investigated.

While this comparison provides insight, it lacks prescriptive guidance for a manager. If the manager

knew the information to be revealed, then there would be no need for computing its value in the

first place.

2. LITERATURE REVIEW

Three key aspects of the existing literature serve as the foundation of our analysis. First, we

examine distribution free approaches to modeling demand uncertainty and uncertainty reduction.

These approaches facilitate robust and tractable decision making and share our perspective that
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distributional assumptions should not be restricted to specific distribution parameters and families.

Second, our work’s objective is to value information and we examine existing techniques used for

this purpose. Lastly, we review entropy’s role as an uncertainty measure and motivate its usefulness

in assigning a probability density over all possible demand distributions.

2.1. Distribution Free Approaches

When the assumption of a specific model or model family may be incorrect, the assumed model is

often outperformed by other techniques that make less restrictive assumptions about demand (see

for example ????). One active research area that facilitates these less restrictive assumptions is

robust optimization. The robust optimization framework finds “worst-case” demand distributions

subject to constraints imposed by any existing information (see pioneering work by ??). Successful

works leveraging the robust framework for information valuation are plentiful. Both ? and ? show

how to calculate the maximum expected value of distribution information given a specified base-

state of knowledge (such as a given mean and standard deviation). ? show the tractability of optimal

inventory decisions which minimize maximum regret (as opposed to maximizing minimum profit

as in ?). The authors study information valuation in this context, but the value of information is

accomplished via comparing the profit of an uninformed decision maker to that of an oracle.

Recent robust optimization techniques (for example ????) continue to facilitate decision making

where distributional uncertainty exists. Of particular note, ? explores the value of full stochastic

modeling and asks a related question to our own, “How can we find out if we would achieve more

with a stochastic model without developing the stochastic model?” In contrast to all of these

“robust” approaches, our modeling of demand distribution uncertainty seeks an expectation of

information value whereas the robust alternatives are restricted to providing an upper bound or a

maximum expected value of information. This is a direct consequence of robust approaches relying

on a “very unreasonable type of [demand] distribution” (?). Mathematically, a two-point demand

distribution is often assumed.

Data-driven approaches are another form of distribution free response to managing demand

uncertainty. Data driven approaches include operational statistics (?), sample average approxima-

tion (??), Kaplan-Meier estimators (?), and other non-parametric algortihms (??). For our intent,

data is not assumed.

2.2. Valuing Uncertainty Reduction

The inventory control literature often uses variance (or equivalently, standard deviation) to quantify

uncertainty surrounding possible values of demand (see for example ???). Hence, the literature

often adopts using variance reduction as a proxy for modeling uncertainty reduction. The seminal

work by ? models uncertainty in a particular item’s forecast using an estimate of the standard
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deviation in forecast error. Assuming a specific distribution, the bivariate normal, differentiates

their work from ours which uses a distribution-free approach (see related discussion in ?, for

comparison of entropy and variance).

Academic authors have successfully used other uncertainty-reduction valuation methods besides

variance reduction. ? study the effects of leadtime uncertainty on long-run average inventory costs

using stochastic ordering criteria. While stochastic ordering defines conditions for which one ran-

dom variable is more variable than another, generated insights tend to be more qualitative than

quantitative. ? enable more numerically driven studies of uncertainty’s effects by introducing a

quantitative methodology borrowed from the micro-economics literature, namely mean preserving

transformation. Unfortunately, there is a downside of using this transformation. All potential levels

of uncertainty, from high to low, have the same expectation of demand. As such, the technique fails

to accurately model potential future states of uncertainty that may exist after one pursues uncer-

tainty reduction; the probability of a change in ordering decision due to full or partial uncertainty

cannot be modeled properly.

Partial uncertainty reduction is often modeled through a Bayesian approach using observations

of demand to reduce uncertainty. The seminal work of ? is often thought of as pioneering the

Bayesian updating approach and has proven successful in the literature over the last half-century.

? use a Bayesian updating procedure to classify future demand as being consistent with a “hot”

selling product or a “cold” product. Other papers applying this Bayesian approach include ?, ?, and

?. Extensions to accommodate unobservable lost sales are noteworthy and include ?, ?, ?, ?, and

?. In contrast to the aforementioned work, we can accommodate, but do not require distributional

assumptions or demand observations to model uncertainty reduction valuation.

2.3. Using the Principle of Maximum Entropy for Assigning Probabilities to
Outcomes

The principle of maximum entropy, as originally developed in ? as an extension of ?, has seen

tremendous success in assigning probability distributions to under-specified problems where mul-

tiple distributions are consistent with the provided information. Maximizing entropy, subject to

constraints based on existing knowledge (e.g. the mean, support, moments, etc.), is the “means of

determining quantitatively the full extent of uncertainty already present” (?). Axiomatic derivation

of the principle of maximum entropy shows that under certain conditions it is a uniquely correct

method for inductive inference (????). Recent successes from wildlife research (?), linguistics (?),

biology (?), software engineering (?), and notably operations management (???) are examples of

the continuing success of the maximum entropy principle in applied settings. Despite an abundance

of successes, debate surrounding the maximum entropy principle’s rationale does exist (see refer-

ences within introduction of ?). We do not seek to resolve this debate, but rather demonstrate the

promise of using entropy and the maximum entropy principle in our context.
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For probability assignment, the maximum entropy principle for the differential (or continuous)

form of entropy is used in this paper (see ?, for introductory material). Over the domain, [1,N ]

differential entropy is defined as: H (x) =−
∫ N

1
f (x) log (f (x))dx where f(·) is a probability density

function. By finding the density f(·), maximizing H (x) subject to any constraints, one is able to

pick a distribution that is considered most consistent with the constraints of the problem. In the

univariate case, many well-known distributions are maximum entropy distributions when particular

constraints are imposed. For example, when only the support of the distribution is known, the

uniform distribution is entropy maximizing; if only the mean and variance are prescribed, then

the normal distribution is entropy maximizing; given just a mean and support of [0,∞], then the

exponential distribution is entropy maximizing. For more examples, readers are referred to the list

of distributions in ? and the more in depth derivations of ?.

Our use of differential entropy implies a definition of ignorance that should be stated explicitly.

Namely, we assume ignorance represents an inability to prefer any one demand distribution to any

other. Without information, all possible demand distributions are considered equally likely. Other

assumptions of ignorance (see ?) can be accommodated through the use of relative (or cross-)

entropy instead of the differential entropy used in this paper. ? and ? discuss the required mathe-

matical machinery for these extensions and our method is equivalent to the use of relative entropy

when the objective is to minimize disparity between the desired density and the uniform density

(?). Our use of differential entropy is similar to the techniques of ? with Crook’s metaprobability

being analogous to a belief distribution.

3. THEORETICAL PRELIMINARIES

In this section, we cover three critical elements enabling the valuation of uncertainty reduction. The

first element of our methodology is to leverage the maximum entropy principle to form belief distri-

butions. These distributions represent a decision maker’s state of uncertainty. The second element

is to create a distribution for potential future information in a way that is consistent with a given

belief distribution. We call this an information distribution and it enables uncertainty reduction

modeling without a priori knowledge of the information to be received. The third critical element is

the expected regret function which computes the expected value of an uncertainty reduction effort.

Combining all of these elements, one can value an uncertainty reduction effort without making

any assumptions, distributional or otherwise, beyond the decision maker’s current knowledge. For

expositional ease, we summarize the important notation to be introduced in this section:
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Sets, Random Variables, and Realizations

di: Possible demand realizations indexed by i∈ {1,2, . . . ,N}.
D: A random variable representing demand with realizations di where i∈ {1,2, . . . ,N}.
pi: Probability that demand, D, is equal to di.
uj : Information in the form of a statistic(s), indexed j ∈ {1,2, . . . ,m}, about the unknown demand

distribution.
P: Set of all possible demand distributions.
Q: Set of all possible demand distributions after information is realized.

p1, . . . , pN : A belief - single (generic) instance of a demand distribution where p1, . . . , pN ∈P.
p= p1, . . . , pN : A random variable, in the Bayesian sense, representing the true demand distribution.
x = x1, . . . , xN : A demand distribution realization of p= p1, . . . , pN .
q = q1, . . . , qN : A random variable, in the Bayesian sense, representing the true demand distribution

after information is realized.
u= u1, . . . , um: A random variable, in the Bayesian sense, representing a vector of information.
y = y1, . . . , ym: An information vector realization of u= u1, . . . , um.

Important Functions

p̂=E[p]: An operational belief representing the demand distribution (belief) used for decision making.
q̂=E[q]: An operational belief representing the demand distribution (belief) used for decision making

after information is realized.
f(x): A belief distribution - a probability distribution over all possible beliefs p1, . . . , pN ∈P occasionally

subscripted, fp(·) and fq(·), referring to the ignorant and informed managers’ belief distributions,
respectively.

M(x): A mapping function whose input is a belief (i.e. demand distribution) and whose output is a statistic
(e.g. mean, median, mode). Multiple maps, Mj(·), are indexed by j ∈ {1,2, . . . ,m} where m separate
statistics are calculated for comparison against information uj .

3.1. Belief Distributions

For this paper, we impose two requirements on a decision maker’s knowledge of a demand distri-

bution. First, demand is discrete and second, the support of demand is known. With just these two

constraints, a decision maker faces ambiguity over which of the infinitely-many feasible demand

distributions, denoted by P, to employ for decision making. In contrast to existing techniques,

we do not seek a single probability distribution for demand p1, . . . , pN ; rather our fundamental

quantity of interest is a belief distribution f(x1, . . . , xN): a probability distribution, over all possible

beliefs (p1, . . . , pN) ∈ P, that is consistent with our knowledge. To form a belief distribution, one

assigns probability to each n-tuple as if the n-tuples themselves are drawn from some distribution

(analogous to modeling metaprobability as described in ?):

p≡ (p1, p2, . . . , pN)∼ f(x1, . . . , xN).

where larger values of f(·) correspond to more plausible beliefs.

We define two types of belief distributions: 1) the ignorant manager’s belief distribution, fp(·),
and 2) the informed manager’s belief distribution, fq(·). The ignorant manager’s belief distribu-

tion represents the current state of uncertainty while an informed belief distribution represents
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Information u

Mode of Demand d∗i : pi∗ = max({p1, p2, . . . , pN})
Median of Demand d∗i :

∑i∗−1

i=1 pi < 1/2,
∑i∗

i=1 pi > 1/2

Mean Demand
∑N

i=1 dipi
Table 1 Possible information that can be priced in our methodology. The demand distribution takes the form

P (Demand = di) = pi, i= 1, . . . ,N . In this paper, our focus is on valuing the mean: u=
∑N
i=1 dipi.

uncertainty given additional information. In this paper, we assume that the additional information

takes the form of constraints on the admissible beliefs in P and our goal is to value this infor-

mation. Generally, we can assume that the m pieces of information take the form of mappings

Mj(p1, . . . , pN) = uj, 1 ≤ j ≤m. When m = 1, we simply write M(p1, . . . , pN) = u. Then in light

of the constraints, the set of all demand distributions is restricted to a subset Q with elements q

such that

Q=P | M(p) = u ⇐⇒ q= p | M(p) = u

and the corresponding conditional density is fq = fp|M=u. An obvious corollary is M(q) = u.

Some examples ofM are shown in Table 1. The examples shown are statistics, but our approach

can also be used to value information that does not relate to “well-known” statistics. For example,

when N = 3, for some δ� 1 we could define

u=

{
1, |p1− p3|< δ,
0, otherwise

(1)

as measuring how symmetric the demand distribution is with respect to d1 and d3. Knowledge of

u as defined in (1) can also be valued within our theoretical framework.

If u is known, the constraint restricts the set of possible beliefs. For example, when di = i and

N = 3, if the mean demand is known to be 2.5, then only beliefs (p1, p2, p3) that satisfy p1 + 2p2 +

3p3 = 2.5 are admissible. “Milder” constraints can also be imposed on belief distributions that do

not restrict the support of the belief distribution. For example, moments of f could be specified.

These shaping constraints do not eliminate potential beliefs; they simply elevate certain beliefs to

be more plausible than others. In §5.2, we present a problem where more plausible beliefs have

expected variance near a certain value, but all beliefs remain feasible representations of demand.

In this paper, we assume that the information represented by the shaping constraints is available

to both ignorant and informed managers. The valuation of such information is not treated in this

paper, but is the subject of future work.

What is the form of f? Naturally, since it is a joint continuous probability distribution, its

integral must be 1. There may also be other constraints on f that reflect the ignorant manager’s
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state of knowledge, for example certain moments of f may be known. This knowledge on f can be

incorporated into a differential entropy functional S that incorporates m constraints:

S[f(x1, . . . , xN)] = −
∫
VN−1

f log fdV +
m∑
j=1

λj

[∫
VN−1

Bj(x1, . . . , xN)f(x1, . . . , xN)dV −Cj
]
, (2)

where

VN−1 =

{
(x1, . . . , xN) | 0≤ xj ≤ 1,1≤ j ≤N, and

N∑
j=1

xj = 1

}
,

the Bj, 1≤ j ≤N are known functions, Cj, 1≤ j ≤N are given constants and λj, 1≤ j ≤m are

Lagrange multipliers. Equivalently, the constraint
∑N

j=1 xj = 1 can be used directly to reduce the

dimension of the domain of integration leading to the functional

S∗[φ(x2, . . . , xN)] = −
∫
V ∗
N−1

φ logφdx2 . . .dxN + (3)

m∑
j=1

λj

[∫
V ∗
N−1

Bj (1−x2− . . .−xN , x2, . . . , xN)φ(x2, . . . , xN)dx2 . . .dxN −Cj
]
,

where

V ∗N−1 =

{
(x2, . . . , xN) | 0≤ xj ≤ 1,2≤ j ≤N, and

N∑
j=2

xj ≤ 1

}
.

Maximization of the functionals (2) and (3) yield the maximum entropy densities f(x1, x2, . . . , xN)

and φ(x2, . . . , xN). The two approaches are equivalent since f and φ are simply related through

a multiplicative Jacobian of transformation. The differential entropy method is common in the

statistical mechanics literature where its maximization is used to find canonical equilibrium distri-

butions of many-particle systems, see ? for example. ? gives many examples of maximum differential

entropy distributions under different constraints. In the simplest case, m= 1, B1 =C1 = 1, yielding

a uniform Dirichlet distribution.

For notational purposes, we derive the informed belief distribution assuming a single piece of

information so that u= u. The generalization to multiple pieces of information is straightforward.

The manager adopts an informed belief distribution fq defined as the probability density over P
conditional on constraint M(p1, . . . , pN) = u. Let Ω(u) = {p ∈ VN−1 | M(p1, . . . , pN) = u} denote

the restricted set of beliefs given u and let IΩ(x) denote the usual indicator function: IΩ(x) = 1 if

x∈Ω and IΩ(x) = 0 if x /∈Ω. Suppose the random variable u is discrete so that u∈ {y1, y2, . . . , yL}
with corresponding probabilities Prob(u= yi) = gyi . Then

P (x≤ p≤ x+ dx | u= yi) =
P (x≤ p≤ x+ dx ∩ u= yi)

P (u= yi)
,

=
P (x≤ p≤ x+ dx ∩ M(q) = yi)

P (u= yi)
.
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Figure 1 (a) The constraint M(p1, . . . , pN ) = u partitions V into L subsets (L can be infinite). Specific cases

where u is the mode, median and mean are shown in (b), (c) and (d).

The numerator is equal to zero if x /∈Ω(yi) and is just P (x≤ p≤ x+ dx) if x∈Ω(yi). Therefore

fq(x;yi) =
fp(x)IΩ(yi)(x)

gyi
. (4)

The constraints M(p1, . . . , pN) = yi, i = 1, . . . ,L partition the simplex VN−1 into L subsets

Ω(y1), . . . ,Ω(yL) and fq(x;yi)∝ fp(x) on Ω(yi); see Fig. 1(a). Specific cases where u is the mode

and median are shown in (b) and (c). Now suppose that u is a continuous random variable so that

Prob(y≤ u≤ y+ dy) = gu(y)dy. Then the continuous generalization of (4) is

fq(x;y) =
fp(x)IΩ(y)(x)

gu(y)
. (5)

The constraints M(p1, . . . , pN) = y, ymin ≤ y ≤ ymax partition the simplex VN−1 into an infinite

number of subsets, each indexed by y and fq(x;y)∝ fp(x) on Ω(y). As an example, when u is the

mean, the appropriate partitions are shown in Fig. 1(d).

3.2. Information Distributions

The ignorant belief distribution fp assigns probability to all possible beliefs of demand. The con-

straint

M(p1, . . . , pN) = u, (6)

can be viewed in two ways. If u is known, it can be interpreted as a constraint on the possible

beliefs that the ignorant manager can take. On the other hand, if u is unknown and p ∼ fp,

the distribution of u can be computed. We call this distribution the information distribution, gu.

We have already seen the role of the information distribution for computing the informed belief

distribution in eqs. (4) and (5).

Mathematically, gu is always well-defined so long as we can associate every belief p1, . . . , pN with

a single finite value of u – mathematically, this means that M(p1, . . . , pN) is single-valued and

defined for every p ∈ VN−1. The information distribution can always be found numerically if one

can sample from fp. In some special cases, it may even be possible to find an analytic form for gu.

In §3.2.1 we will explore such a case.
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Figure 2 Monte Carlo simulation results for the distribution of
∑N
j=1 jpj where pj are uniformly sampled from

the simplex VN−1. Red curve shows analytic solutions using Lemma 1 for the cases N = 3,4,5.

3.2.1. Probability Distributions for Future Information When Only The Support

of Demand is Known When the ignorant manager only knows the support of demand, the

maximum (differential) entropy principle prescribes that all N -tuples (p1, p2, . . . , pN) are considered

equally likely (?, see pp. 123-127). Equivalently, the potential demand distribution (N -tuple) that

accurately describes demand is uniformly drawn from the simplex VN−1. The pi are treated as

random variables and hence, any function of p is also a random variable. In this section, we leverage

the work of ? to derive closed-form expressions for the distribution of the mean demand.

Suppose that the information gained from the uncertainty reduction effort is the mean u. Analytic

forms for the distribution of u≡ p1 + 2p2 + . . .+NpN can be found through Lemma 1.

Lemma 1. Let (p1, p2, . . . , pN) be a vector random variable, uniformly distributed over the simplex

defined by
∑N

i=1 pi = 1, pi ≥ 0. The probability distribution function for u≡ p1 + 2p2 + . . .+NpN is

gu(y;N) =
(y− 1)N−2

(N − 2)!
− (N − 1)

dye−2∑
k=1

(y− 1− k)N−2

k
∏
i 6=N−k(N − k− i)

(7)

for 1≤ y≤N and dye is the smallest integer greater than or equal to y. The product in (7) is taken

over all integers i from 1 to N − 1 except for N − k.

Proof of Lemma 1 All proofs are provided in the Appendix.

For the special cases N = 3,4,5, Fig. 2 shows the analytic form of gu(y;N) and associated

confirmation of the form through Monte Carlo simulations.

Remark 1. The densities in (7) have an interesting property when N is large. Specifically,

numerical investigations suggest the scaling

gu(y;N)∼ 1√
N
×H

(
y− (N + 1)/2√

N

)
, N →∞. (8)
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Figure 3 (a) Probability density for the mean fu(x;N) as given by eq. (7) when N = 10,15,20,25. (b) A rescaling

of the x and y axes collapses all the densities onto approximately the same curve H(·) (see eq. (8))

providing N is sufficiently large.

for some function H(y). This function is found empirically in Fig. 3(b).

In other words, when N is large, gu(x;N) can be obtained from a single function H(·) which is

approximated in Fig. 3(b). We use this property of fu in the revenue management problem of §5.3.

3.3. Operational Beliefs and The Notion Of Regret

Assume loss matrix element Lki represents the loss of making decision k when outcome di is realized.

A classical example for this decision setting is that of a newsvendor who faces a stochastic demand

and orders a certain number of newspapers (?). Thus, the expected loss of decision k, where we

know only that P (D= di) = pi, can be given by looking at the kth row of loss vector L such that:

Lk =
N∑
i=1

Lki×P (D= di) = eTkLp, (9)

where ek is the kth unit column vector (zeros everywhere except for a 1 in the kth row), L is the

loss matrix with entries Lki, and p is the true demand distribution.

Since p ∼ fp is a stochastic quantity, the loss vector L is also stochastic. For decision making

purposes, a manager with belief distribution fp calculates the expected value of loss vector L :

E[L] =E[Lp] = LE[p]. Therefore, he chooses a single N -tuple, p̂ = (p̂1, p̂2, . . . , p̂N), which we call

an operational belief, such that each p̂i represents the marginal probability of demand di:

p̂=E[p]. (10)

Notationally, we use p̂ to represent either a generic operational belief or the ignorant manager’s

operational belief, depending on context. For the informed manager, that is to say the perspective
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of a manager with information u, eqns. (4) - (5) are used to generate the informed manager’s belief

distribution q(u)∼ fq. The associated operational belief is

q̂(u) =E[q(u)]. (11)

It is important to note that each operational belief, both ignorant and informed, is adopted strictly

for decision making purposes; it is used only as input into loss function (9) and not as a statement

about which demand distribution is in some sense more plausible. The plausibility is already

captured in a belief distribution. When analytic forms of the operational beliefs are not available,

the high dimensional integrals implied by E[·] in (10) and (11) can be numerically approximated

using the Metropolis-Hastings algorithm (?).

The value of information is measured using the notion of regret. In this paper, regret measures the

reduction in expected loss (e.g. expected supply/demand mismatch costs) that could be obtained

when making a decision from a more informed perspective as opposed to sticking with the decision

made from the more ignorant perspective. Assuming that managers act rationally in order to

minimize loss, the regret of the ignorant manager who fails to use or acquire information u is

R(u) = eTK∗Lq̂(u)− eTk∗Lq̂(u), (12)

where the integers K∗ and k∗ satisfy

K∗ = k | eTkLp̂= min, (13)

k∗ = k | eTkLq̂ (u) = min, (14)

and represent the ignorant and informed managers’ decisions, respectively. Note that the informed

decision k∗ depends on the information u while the ignorant decision K∗ does not. Hence, the

first term of (12) represents the expected loss when using ignorant decision K∗. The second term

represents the expected loss when using the more informed decision k∗. Each term is calculated

using the informed manager’s operational belief. Thus, the difference of the two terms is the

informed manager’s expectation of the value of information u.

The regret function (12) values u – if it is known – by comparing the decisions of the ignorant

and informed managers. However, for our information-valuation purposes, u is not known, and

the goal is to value the potential information prior to knowing what information is to be revealed.

Enabled by the existence of information distribution gu, an ignorant manager can now value an

uncertainty reduction effort by calculating E[R(u)]. When u are continuous, the expected dollar

value of pursuing an uncertainty reduction is

E[R(u)] =

∫ ∞
−∞

. . .

∫ ∞
−∞

R(u′1, . . . , u
′
m)gu(u′1, . . . , u

′
m)du′1 . . .du

′
m. (15)
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If gu cannot be found analytically (which is often the case), one can still approximate (15) through

E[R(u)]≈ 1

M

M∑
i=1

R(u
(i)
1 , . . . , u(i)

m ), (16)

where the m-tuples (u
(i)
1 , . . . , u(i)

m ), 1≤ i≤M are realized by sampling p∼ fp and using (6).

Eq. (15) values information by considering all possible realizations of information u with each

realization leading to a different value for regret. In addition, each realization leads to a different

loss associated with the ignorant decision. The next lemma establishes a consistency between the

distribution of the informed manager’s expectation of loss associated with the ignorant decision

and the ignorant manager’s expectation of his own loss.

Lemma 2. The expected loss associated with the ignorant manager’s decision, as measured using

the informed manager’s perspective over all possible realizations of information u, is the same as

the ignorant manager’s calculation of his own expected loss, i.e.

Eu[eTK∗Lq̂(u)] = eTK∗Lp̂. (17)

Proof of Lemma 2 All proofs are provided in the Appendix.

Thus, our valuation of information E[R(u)] can also be thought of as the difference between

the ignorant manager’s expected loss eTK∗Lp̂ and the expectation of the informed manager’s loss

E[eTk∗Lq̂(u)].1 This representation of regret is more common (see ?, p.376).

4. Methodology for Pricing Information

With the theoretical preliminaries in place, we provide the steps to value information using only

one’s current information:

(1) Form the ignorant belief distribution: Apply the maximum entropy principle to create

an ignorant belief distribution, fp, that is most consistent with current information.

(2) Find the ignorant operational belief and associated decision: From the ignorant belief

distribution, form an operational belief, p̂; see eq. (10) and note the associated decision K∗.

(3) Derive the information distribution: Characterize how the information u is related to

the demand distribution by determining the relation M(p1, . . . , pN) = u in (6). Since the

distribution of p is known, the distribution gu is also known. The information distribution

may have a closed form; if not, it can be realized numerically.

(4) Characterize the informed belief distributions: For each possible u, determine how

the belief space is restricted and determine how the belief space is partitioned by different u

values; see Fig. 1. Mathematically, the informed belief q follows a distribution fq given by (5).

1 For notational brevity the dependence of informed decision k∗ on information u is not explicitly shown.
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(5) Find all informed operational beliefs and decisions: For each informed belief distribu-

tion (of which there may be an infinite number) make an informed operational belief q̂; see

eq. (11) and note the associated decision k∗.

(6) Form the regret function: Calculate the regret for each specific u; see eq. (12). Typically,

this is calculated as the difference in expected loss (under the informed operational belief)

between decision K∗ and k∗.

(7) Compute expected regret: Compute expected regret as the expectation of step 6 over all

possible values of u and using the distribution for u from step 3. See eqs. (15) and (16).

5. Examples and Associated Derivations

In this section, the valuation of information using the maximum entropy techniques of §3 is demon-

strated in various application settings. For each setting, numerical examples along with instructive

derivations and insights are discussed.

5.1. Newsvendor Model

Our first example is that of the newsvendor problem; a canonical model in inventory management

(?). The newsvendor faces a stochastic demand D with P (D= j) = pj and must pre-order i news-

papers where i, j ∈ {1,2, . . . ,N}. Mismatches in order quantity and demand result in a loss, which

is represented by a loss matrix L with components

Lij =

{
(i− j)co, if i≥ j,
(j− i)cu, if i < j,

(18)

and the underages and overages cu and co are given. Given {p1, . . . , pN}, the classical newsvendor

problem is to determine the optimal order quantity and associated loss.

Now suppose that (p1, . . . , pN) are unknown, but N , co and cu are known and the mean demand

u= p1 +2p2 + . . .NpN can be determined by surveying the market (for example). How much should

one pay for this extra information? We perform our analysis for the particular case where N = 3

and cu = co = $50.

We first solve the classical newsvendor problem, given an arbitrary belief in the demand

(p1, p2, p3). The loss is 50 min [2− 2p1− p2,1− p2,2p1 + p2], and the associated optimal decision is

K∗ =

 1, p1 > 1/2,
2, p1 + p2 > 1/2, p1 < 1/2,
3, p1 + p2 < 1/2.

(19)

where p1 + p2 ≤ 1 and p1 ≥ 0, p2 ≥ 0. We now go through the seven steps in section 4 to value the

mean.
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Steps 1 and 2 - Form the ignorant belief distribution, the ignorant operational belief

and associated decision: The differential entropy functional (3) with m= 1, B1 =C1 = 1 is

S∗[φ] =−
∫ 1

0

∫ 1−x2

0

φ(x2, x3)dx3dx2 +λ1

[
−1 +

∫ 1

0

∫ 1−x2

0

φ(x2, x3)dx3dx2

]
. (20)

We wish to find φ that maximizes this functional. Introducing a small perturbation in φ, which we

call δφ, we have

S∗[φ+ δφ]−S∗[φ] =

∫ 1

0

∫ 1−x2

0

δφ(− logφ− 1 +λ1)dx3dx2−
∫ 1

0

∫ 1−x2

0

δφ2

2φ
dx3dx2 +O(δφ3).(21)

The first integral represents the first variation which must vanish for all δφ if φ is an extremizing

function. Therefore φ = exp(λ1 − 1) = C, a constant which must satisfy
∫ 1

0

∫ 1−x2
0

Cdx3dx2 = 1⇒
C = 2. It follows that φ(x2, x3) is uniform over V ∗2 , that is

φ(x2, x3) = 2, (x2, x3)∈ V ∗2 , (22)

⇒ fp(x1, x2, x3) =
2√
3
, (x1, x2, x3)∈ V2,

and furthermore, (22) is a maximizer of eq. (20) since the second variation in (21) is strictly negative

when δφ 6= 0.

The operational belief is

(p̂2, p̂3) =E[(p2, p3)] =

∫ 1

0

∫ 1−p3

0

(2p2,2p3)dp2dp3 =

(
1

3
,
1

3

)
,

so that p̂= (1/3,1/3,1/3). The corresponding loss is 50 min (2− 2p̂1− p̂2,1− p̂2,2p̂1 + p̂2) = $100/3,

with optimal order quantity K∗ = 2 units.

Step 3 - Derive the information distribution: We compute the distribution of u= p1 +

2p2 + 3p3 given that (p2, p3)∼ φ in (22) and p1 = 1− p2− p3. Using Lemma 1 and in particular eq.

(7) when N = 3, we have

gu(y; 3) =

 y− 1, 1≤ y≤ 2,
3− y, 2≤ y≤ 3,

0 otherwise.

so that the information distribution is triangular on x ∈ [1,3]. This is consistent with intuition

since more randomly generated 3-tuples from fp will have mean close to 2 rather than the extreme

values 1 and 3.

Step 4 - Characterize the informed belief distributions: Eliminating p1 from

p1 + p2 + p3 = 1, (23)

p1 + 2p2 + 3p3 = u, (24)
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Figure 4 Given extra information about mean demand, the ignorant belief space V2, is restricted to the informed

belief space (vertical lines). The informed belief space consists of the intersection of planes x1 + 2x2 +

3x3 = u with V2. The dashed line shows possible informed beliefs when u= 2.

we find that p2 = u− 1− 2p3. For a given u, the informed belief space consists of (x1, x2, x3) that

lie on the intersection of (23) and (24); see Fig. 4. The (x2, x3) coordinates of the vertical lines in

the figure satisfy x2 = u−1−2x3. Therefore, the informed belief distribution is q3 ∼U(0, (u−1)/2)

when 1≤ u≤ 2 and q3 ∼U(u− 2, (u− 1)/2) when 2≤ u≤ 3.

Step 5 - Find all informed operational beliefs and decisions: Taking expectations over

fq, we find that

q̂3(u) =

{
(u− 1)/4, 1≤ u≤ 2,

(3u− 5)/4, 2≤ u≤ 3.

Since q̂2 = u− 1− 2q̂3 and q̂1 = 1− q̂2− q̂3, we find that

q̂1(u) =

{
(7− 3u)/4, 1≤ u≤ 2,
(3−u)/4, 2≤ u≤ 3,

q̂2(u) =

{
(u− 1)/2, 1≤ u≤ 2,
(3−u)/2, 2≤ u≤ 3.

A geometric interpretation of (q̂1, q̂2, q̂3) is that they are the coordinates of the centers of mass of

the vertical lines in Fig. 4. Under these beliefs, the loss is

50min (2− 2q̂1− q̂2,1− q̂2,2q̂1 + q̂2) =

{
50min

(
u− 1, 3−u

2
,3−u

)
, 1≤ u≤ 2,

50min
(
u− 1, u−1

2
,3−u

)
, 2≤ u≤ 3.

Minimizing loss as a function of u implies that the optimal order quantity is

k∗(u) =


1, 1≤ u≤ 5

3
,

2, 5
3
≤ u≤ 7

3
,

3, 7
3
≤ u≤ 3.

(25)
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Steps 6 and 7- Compute the regret function and expected regret: The regret function is

given by eq. (12) where L=

 0 50 100
50 0 50
100 50 0

, and k∗ and K∗ are given by (25) and (19) respectively.

The expected regret is computed stochastically by generating (p
(i)
2 , p

(i)
3 ) from a Dirichlet(1,1,1)

distribution, taking p
(i)
1 = 1− p(i)

2 − p(i)
3 and computing

u(i) = p
(i)
1 + 2p

(i)
2 + 3p

(i)
3 , i= 1, . . . ,M,

E[R(u)] ≈ 1

M

M∑
i=1

R(u(i)) = $7.41,

using M = 10,000 draws. If the newsvendor’s quest for the mean is expected to cost more than

$7.41, then he acts using currently available information. Otherwise, pursuit of a belief in mean

demand is advisable. This calculation illustrates the methodology’s tremendous potential; valuation

of an uncertainty reduction effort is possible without knowing the exact information that will be

revealed! In addition, one can see from the loss function that the maximum value of regret for

K∗ = 2 (i.e. the EVDI) would be $50 (i.e. if u= 1 or u= 3). Thus, the upper bound on regret is

not tight and would be misleading as a proxy for valuing uncertainty reduction efforts.

5.2. Quick Response Model

Given more time, demand predictions for a short lifecycle product can be made with more certainty

based upon early market feedback (see for example ?). However, the need to start production before

the selling season leads to two possible strategies to overcome the inherent forecast uncertainty. One

supply strategy is to produce enough in the initial production run to accommodate any potential

scenario for demand. Alternatively, a supply manager can employ a quick response strategy where

shortened leadtimes allow for an additional production run after a demand signal is made more

clear. The first production run is made to ensure enough supply is available to start the season

and the additional production run ensures a closer match between supply and demand. Under a

quick response strategy, total production is chosen with greater precision in forecasted demand.

To value the benefits of quick response, we assume that a history of forecasting situations, similar

to those presented in ?, provides the ignorant manager with an expectation of forecast accuracy.

For our modeling purposes, the ignorant manager knows that beliefs exhibiting this historical

forecast accuracy, as measured by the observed variance of previous forecast errors, are superior to

other beliefs. The only problem is that the first moment of demand (i.e. mean demand) is simply

unknowable without employing quick response. The ignorant manager’s current information is that

he knows the demand support and has an expectation of the demand variance exhibited by more

plausible beliefs. His valuation question is whether to use quick response so that more information,

in the form of a belief in expected demand, can be acquired. Our valuation of more information
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in this setting is similar to, albeit less restrictive, than that used by ?. In their study, quick

response valuation is accomplished by assuming an additional production run can be made using a

perfectly accurate demand forecast. In contrast, the methodology presented here allows for shaping

of the belief space in such a way that a manager’s distributional uncertainty is modeled; highly

plausible distributions can be differentiated from less plausible distributions through constraining

(e.g. specifying moments of the demand distribution) or shaping (e.g. specifying moments of the

belief distribution) of the belief space.

In the quick response model, the manager must pre-order i units in the face of stochastic demand

D. As in the newsvendor model, assume P (D = j) = pj, i, j ∈ {1,2, . . . ,N}. A mismatch between

order quantity and demand results in a loss, represented by a loss matrix L whose components

are given by eq. (18). The quick response model differs from the newsvendor model in that the

ignorant and informed managers are able to forecast the variance of the demand distribution. There

are two potential ways of modeling this knowledge. We could constrain the belief distributions to

have non-zero density only for those beliefs that have variance σ2
0; this is a stringent requirement.

Alternatively, we can shape the entire population of plausible beliefs to have an expected variance,

σ2
0, such that

E[σ2(p1, p2, . . . , pN)] = σ2
0, (26)

where σ2(p1, . . . , pN) =
∑N

k=1 k
2pk −

(∑N

k=1 kpk

)2

is the variance of the demand distribution. By

specifying that ignorant beliefs have an expected variance, all N -tuples (p1, . . . , pN) are admissible,

but those with σ2(p1, . . . , pN) close to σ2
0 are assigned greater probability density. The problem now

is to value the mean demand
∑N

k=1 kpk given that N , co and cu are known, and the p1, . . . , pN are

unknown but constrained by (26).

To facilitate both analytic and graphical illustration of the methodology, we again consider a

3-decision problem. with cu = $80, c0 = $20. Also assume that i and j are measured in hundreds of

units. The loss matrix is

L=

 0 8,000 16,000
2,000 0 8,000
4,000 2,000 0

 .
Step 1 - Form the ignorant belief distribution: To find the ignorant belief distribution,

we find the maximum entropy distribution subject to the additional constraint. We set φ(x2, x3) =

fp(1−x2−x3, x2, x3), and find the φ that maximizes the entropy functional

S[φ] = −
∫ 1

0

∫ 1−x2

0

φ(x2, x3) logφ(x2, x3)dx3dx2 +λ1

[
−1 +

∫ 1

0

∫ 1−x2

0

φ(x2, x3)dx3dx2

]
+

λ2

[
−σ2

0 +

∫ 1

0

∫ 1−x2

0

(4x3 +x2− 4x3
2−x2

2− 4x3x2)φ(x2, x3)dx3dx2

]
(27)



Fleischhacker and Fok: Valuation of Demand Uncertainty Reduction
19

0
0.5

1

0
0.5

1

0

0.5

1

 

p1

σ0 = 0.75

p2 

p
3

0

0.5

1

1.5

2

0
0.5

1

0
0.5

1

0

0.5

1

 σ0 = 0.70

 0

0.5

1

1.5

2

0
0.5

1

0
0.5

1

0

0.5

1

 σ0 = 0.65

 0

0.5

1

1.5

2

Figure 5 Heat maps on the 2-simplex V2 showing the maximum entropy distribution subject to a variance

constraint (p1 + 4p2 + 9p3)− (p1 + 2p2 + 3p3)2 = σ2
0.

The first term is the differential entropy term; the term proportional to λ1 constrains φ to integrate

to 1, and the term proportional to λ2 imposes the constraint (26). To maximize S, note that

S[φ+ δφ]−S[φ] =

∫ 1

0

∫ 1−x2

0

δφ
{

(−1− lnφ) +λ1 +λ2[4x′3 +x′2− 4x′3
2−x′2

2− 4x′3x
′
2]
}

dx′3dx′2

−1

2

∫ 1

0

∫ 1−x2

0

δφ2

φ
dx′3dx′2 +O(δφ3).

The second order term containing δφ2 is strictly negative. Therefore if

φ(x2, x3) = a exp
[
λ2(4x3 +x2− 4x2

3−x2
2− 4x3x2)

]
, (28)

then the functional (27) is maximized. The constants a and λ2 satisfy

σ2
0 = 1− 3

2λ2

+
3eλ2/4Erf(

√
λ2/2)

2eλ2Erf(
√
λ2)− 4eλ2/4Erf(

√
λ2/2)

, (29)

a−1 =
√
πλ
−3/2
2

[
eλ2

2
Erf
(√

λ2

)
− eλ2/4Erf

(√
λ2

2

)]
, (30)

where Erf(z) is the error function with (possibly complex argument): Erf(z) =
√

2
π

∫ z
0
e−t

2
dt. For a

given σ0, eqs. (29) and (30) can be solved numerically. Once a and λ2 are known, they determine

the ignorant manager’s belief distribution through (28). In Fig. 5, the ignorant belief distribution is

shown for three values of expected variance. As intuition suggests, reducing variance concentrates

the density of beliefs around the 3-tuples representing certainty, namely (1,0,0), (0,1,0) and (0,0,1).

Note that these extremal 3-tuples, corresponding to the vertices of the simplex, have the minimum

variance σ2(·, ·, ·) among all 3-tuples. Thus, in cases where σ0 is small, a belief such as p= (1
3
, 1

3
, 1

3
)

is a far less plausible demand distribution than say a belief of p= (1,0,0).
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Step 2 - Find the ignorant operational belief and associated decision: The ignorant

manager’s operational belief is(
p̂2

p̂3

)
= a

∫ 1

0

∫ 1−p2

0

(
x2

x3

)
exp

[
λ2(4x3 +x2− 4x2

3−x2
2− 4x2x3)

]
dx3dx2,

=


1

λ2

− eλ2/4Erf(
√
λ2/2)

eλ2Erf(
√
λ2)− 2eλ2/4Erf(

√
λ2/2)

1

2
− 1

2λ2

+
eλ2/4Erf(

√
λ2/2)

2eλ2Erf(
√
λ2)− 4eλ2/4Erf(

√
λ2/2)

 . (31)

with corresponding loss 2000min [4p̂2 + 8p̂3,1− p̂2 + 3p̂3,2− p̂2− 2p̂3], and optimal order quantity

K∗ =

 1, if p2 + p3 < 1/5,
2, if p2 + p3 > 1/5 and p3 < 1/5,
3, if p3 > 1/5.

and of course pi are further subjected to the constraints p1 + p2 ≤ 1 and pi ≥ 0.

Note that in eq. (31), (p̂2, p̂3)→ (0,1/2) as λ2 →∞ and → (2/3,1/6) as λ2 → −∞. Further

analysis reveals that λ→∞⇔ σ0→ 1 and λ→−∞⇔ σ0→ 0. The locus of ignorant operational

beliefs forms a finite line segment, as shown by the blue line in Fig. 6 with a the ignorant operational

belief, p̂, and the associated optimal decision, K∗, determined by σ0. We see that based on the

operational belief, the only admissible order quantities are K∗ = 2 and K∗ = 3. The switch occurs

when (p̂2(λ2), p̂3(λ2)) = (3/5,1/5) so that λ2 ≈−22.078180 and

K∗ =

{
2, if σ0 <σ

∗
0 ,

3, if σ0 >σ
∗
0 .

(32)

where σ∗0 ≈ 0.316228.

Step 3 - Derive the information distribution: In this example, the analytic form of gu

is more challenging to derive, so numerical realizations of gu are used instead. Briefly, we sample

M 3-tuples from (28) using a rejection-acceptance algorithm and then form the sum u(i) = p
(i)
1 +

2p
(i)
2 + 3p

(i)
3 for i= 1,2, . . . ,M . These u(i) are used to approximate the probability density function.

Figure 7 shows six instances of the density function for various σ0. The information distribution

changes in interesting, but predictable ways. When σ0 is small, the probabability density of u is

concentrated at 1, 2, and 3. This is consistent with the heat map in Fig. 5(c). As σ0 is increased,

the distribution becomes closer to a triangular distribution. In particular, when σ0 = 0.7, the heat

map in (5) essentially has uniform density so it is not surprising that gu resembles the one in Fig.

2(a) so closely. As σ0 is further increased, u= 2 becomes most likely since the most likely 3-tuple

as σ0→ 1 is (p1, p2, p3) = (1/2,0,1/2).

Steps 4 and 5- Calculate the informed belief distributions, operational beliefs and

associated decisions: By restricting possible beliefs to satisfy u = p1 + 2p2 + 3p3, we find

that the informed belief distribution can be written purely as a function of x3: fq(x3;u) =
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Figure 6 Optimal order quantities K∗ of the ignorant manager (measured in hundreds of units) vary depend-

ing on the manager’s operational belief. The dashed lines partition the belief space. The blue line

shows the locus of all ignorant operational beliefs. The red square corresponds to the point (0.5,0.25)

corresponding to σ0 = 0.5.
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Figure 7 Numerical realizations of fu for six values of σ0.

ã exp [λ2 (2x3−u2 + 3u− 2)], where ã = (2λ2e
λ2(u2−3u+3))/(eλ2u − eλ2) if 1 ≤ u ≤ 2 and ã =

(2λ2e
λ2(u2−4u+6))/(e3λ2 − euλ2), if 2≤ u≤ 3.
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The informed manager’s operational beliefs are found by taking expectations over fq. Closed

form solutions for q̂(λ2, u) are available and are given in Appendix B. The corresponding loss is:

2000min [4q̂2(λ2, u) + 8q̂3(λ2, u), q̂1(λ2, u) + 4q̂3(λ2, u),2q̂1(λ2, u) + q̂2(λ2, u)] . (33)

Steps 6 and 7- Form the regret function and compute expected regret: Using (32),

the regret function is

R(u) = −2000min [4q̂2 + 8q̂3, q̂1 + 4q̂3,2q̂1 + q̂2] +

{
2000(q̂1 + 4q̂3), if σ0 <σ

∗
0 ,

2000(2q̂1 + q̂2), if σ0 ≥ σ∗0 .
(34)

The expectation is approximated using the sample mean and Monte Carlo simulation:

E[R(u)]≈ 1

M

M∑
i=1

R(p
(i)
1 + 2p

(i)
2 + 3p

(i)
3 ),

where for i= 1, . . . ,M , (p
(i)
2 , p

(i)
3 ) are drawn from the density (28) and p

(i)
1 = 1− p(i)

2 − p(i)
3 .

Fig. 8 shows the value of u as a function of σ0. Thus, in situations where the mean is valued with

prior knowledge of forecast accuracy (σ0), one can determine if the benefits of a quick response

initiative justify the costs. For example, at σ0 = 0.7, the extra costs to enable quick response should

be less than ≈ $250 for those costs to be justified. To find a worst-case distribution for regret as a

point of comparison, one has two choices. First, we can assume σ0 = 0.7 to be the actual variance

of the demand distribution (i.e. q̂1 + 4q̂2 + 9q̂3)− (q̂1 + 2q̂2 + 3q̂3)2 = 0.7), then find the maximum

regret (34) subject to this variance constraint. The answer turns out to be maxu[R(u)] = $0. All

feasible distributions of the given variance lead to an unchanged decision. Alternatively, one can

pursue maximizing regret without the variance constraint (as all beliefs are assumed possible) and

discover that maxu[R(u)] = $4,000 when u= 1. In either case, the upper bound on the valuation

of uncertainty reduction proves quite different from the results presented here. As a manager, one

should be leery of using maximum regret as an information-valuation methodology and recognize

that the value of quick response strategy is highly dependent upon the reduction uncertainty that

can be achieved.

5.3. Revenue Management Model

We now examine the value of information for a pricing decision as opposed to the previously men-

tioned inventory decisions. In addition, this example is used to explore a larger decision/outcome

space. Assume a manager faces a revenue management problem where his decision is to choose

a price to optimize revenue over a finite selling period. This manager seeks to understand the

potential value of information regarding the market size parameter of a linear demand curve (see

?, and references therein for discussion of similar problems). The choice of a linear demand model
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Figure 8 Price of u as a function of σ0 for the quick response problem. 10,000 trials were used in the expectation

for each σ0 value.

for analysis is common in the literature (e.g. ??) because they are often used in practice and are

shown to provide good performance even when the model of demand is misspecified (?).

Assume demand to be a linearly decreasing function of price such that demand D = A− Br
where r is a non-negative price to be determined, and constants A and B are independent of r.

A> 0 is the market potential (or size) and is a pure integer. B > 0 is the slope of the demand curve.

For exposition, we assume inventory is sufficient and pricing decisions are made such that demand

satisfies 0 ≤D ≤ I for all relevant values of A and r. Suppose the slope of the demand curve B

is known, but an ignorant manager’s information regarding market potential A is unknown. How

should information regarding the mean of A be valued?

We now state the problem more precisely. The demand follows a function of the form D(r) =

A − Br. While B is known, A is unknown in the sense that its value follows some probability

distribution with known support:

Prob(A=N0 + i) = pi, i= 1,2, . . . ,N,

A∈ {N0 + 1,N0 + 2, . . . ,N0 +N},

where N and N0 are known, but the probabilities pi (which quantify the manager’s belief in A)

are unknown. Under a belief p, the manager chooses a price r in order to maximize expected

revenue L(p, r)≡E[D(r)]× r. The problem is to calculate the additional revenue when the mean

of A is known to the manager and therefore compute a fair price for it. Let us now follow the 7

steps in section 4 to price the mean of A.

Step 1 - Form the ignorant belief distribution: As in the previous examples, we may

represent all possible beliefs with the ignorant belief distribution fp. Given that no information



Fleischhacker and Fok: Valuation of Demand Uncertainty Reduction
24

about fp is known apart from the fact that it is a density on VN−1, all beliefs are equally likely

and the maximum entropy belief distribution is uniform over V ∗N−1 (?):

fp(1−x2− . . .−xN , x2, . . . , xN−1, xN) =

{
(N − 1)!, (x2, x3, . . . , xN)∈ V ∗N−1,

0, otherwise.

Steps 2 and 3 - Find the ignorant operational belief, associated decision and infor-

mation distribution: Expected revenue L is given by the product of expected demand and

price:

L(p, r) =E[A]r−Br2 = r
N∑
i=1

pi(N0 + i)−Br2, (35)

and we see that L depends on the manager’s beliefs {pi}, specifically on his belief in the

mean E[A]. His operational belief is p̂i = E[pi] =
∫
VN−1

xifp(x1, . . . , xN)dx1 . . .dxN , so that p̂ =

(1/N,1/N, . . . ,1/N). The optimal decision for this problem is to choose the price r0 that maximizes

the revenue L(p̂, r) = r[N0 + (N + 1)/2]−Br2:

r0 = r | L(p̂, r) = max =⇒ r0 =
N0 + (N + 1)/2

2B
. (36)

Consider now the introduction of new information, the mean of A: v ≡N0 +
∑N

i=1 ipi. Then the

information distribution for v is

gv(y;N) = gu(y−N0;N). (37)

where gu(·;N) is given by eq. (7).

Steps 4 and 5 - Characterize the informed belief distributions, informed operational

beliefs and associated decisions: In light of new information v, the informed belief distribution

is found from eq. (5):

fq(x1, . . . , xN , y) =
fp(x1, . . . , xN)IΩ(y)(x1, . . . , xN)

gv(y;N)
, (38)

where Ω(y) = {x∈ VN−1 :
∑N

i=1 ixi = y}. The operational beliefs are

(q̂1(y), . . . , q̂N(y)) =

∫
Ω(y)

(x1, . . . , xN)fq(x1, . . . , xN , y)dx1 . . .dxN ,

= [fu(y)]
−1

∫
Ω(y)

(x1, . . . , xN)fp(x)IΩ(y)(x)dx1 . . .dxN . (39)

The results of steps 4 and 5 are not directly used because revenue (35) depends on the belief in

the mean E[A] rather than the individual probabilities qi. Nevertheless, for sake of completeness,

we have outlined how the informed belief distribution and informed operational beliefs could be
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calculated through (38) and (39). If the individual informed operational probabilites q̂i were needed,

the multi-dimensional integrals in (39) can be computed using monte-carlo integration.

Step 6 - Form the regret function: The expected revenue for the informed manager who

acts on knowledge of v is

L(q̂, r) = r
N∑
i=1

q̂i(N0 + i)−Br2 = rv−Br2. (40)

Note that since the informed probabilities satisfy the constraintM(q) = v, so must the operational

belief q̂ and we have N0 +
∑N

i=1 iq̂i = v.

An informed manager would maximize his revenue by setting the price as r∗ = v/(2B) (maximizer

of (40)) in which case his revenue is

L(v, r∗) =
v2

4B
. (41)

We emphasize that in this problem, the revenue can be found directly from the new information,

as opposed to finding an operational belief that is consistent with this information and using it to

find the revenue. In other words, we use v to calculate L in (40) instead of the {q̂i}. (Accordingly,

we have abused notation in (41) by replacing the first argument of (40) with v).

Now consider a manager who knows v but chooses to act as if he was ignorant of this information.

His operational belief is p̂i = 1/N for i= 1, . . . ,N , his operational belief in the mean is N0 + (N +

1)/2 and despite his knowledge of v, he sets a price r0 as given by eq. (36). His corresponding

revenue is

L(v, r0) = r0v−Br2
0. (42)

Therefore, the regret function is the difference between the revenues (41) and (42):

R(v) =
1

4B

[
v−N0−

N + 1

2

]2

.

Step 7 - Compute expected regret: Using (37) and the asymptotic property of gu when

N � 1 (relation (8)), we have

E[R(v)] =

∫ N0+N

N0+1

R(v′)gv(v
′;N)dv′,

=

∫ N0+N

N0+1

R(v′)gu(v′−N0;N)dv′,

∼ 1√
N

∫ N/2

−N/2
R(y+N0 + (N + 1)/2)H(y/

√
N)dy,

=
1√
N

∫ N/2

−N/2

y2

4B
H

(
y√
N

)
dy,

∼ N

4B

∫ ∞
−∞

z2H(z)dz,
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and recall that H(·) is a known even function which we determined empirically in Fig. 3(b). In

other words, the value of u increases linearly with N and decreases linearly in B. From a manager’s

perspective, the value of market size information (i.e. the mean) is most useful for products/services

with uncertain market potential and relatively inelastic demand. For example, let us examine the

role of uncertainty in pricing airplane seats. Investing in reducing the demand uncertainty for

routes with more inelastic demand (e.g. business travel routes) is more important than information

pertaining to routes with elastic demand (e.g. pleasure travel); it would be of greater benefit to

forecast the impact of large business conventions than say the impact of cruise ship locations on

market potential.

6. CONCLUDING REMARKS

Our method of valuing information purely lives within the traditional notions of Bayesian statistical

inference (see ?). A Bayesian would not assert that his operational belief p̂ represents the “true”

demand distribution, rather his operational belief is a construct purely used for decision making

at a specific point in time. As additional information is obtained, the Bayesian’s operational belief

would then change as well. Historically, the laborious numerical tasks of working with and updating

arbitrary belief distributions (and associated operational beliefs) led decision makers to jump to

the use of conjugate distributions. The most relevant conjugate relationship to our work is that

between a Dirichlet prior and information in the form of sample realizations generated from a

multinomial distribution. The posterior distribution would then also be from the Dirichlet family

of distributions (see ?, §9.8).

In an information valuation context, conjugacy is leveraged as part of a preposterior analysis to

estimate the expected value of sample information (EVSI) prior to knowing what sample might be

collected (see example in ?). Our methodology is analogous in philosophy to preposterior analysis,

both methods use prior information to create a probability distribution over potential posterior

distributions. Differences of our work from the more traditional preposterior analysis are: 1) dis-

tributional assumptions are not required; construction of maximum-entropy belief distributions

enable prior beliefs to be made consistent with current knowledge, and 2) more general information

distributions arise naturally from belief distributions; the information is not restricted to being a

realization of demand, rather information about the demand distribution itself can also be valued.

Our methodology’s reliance on potentially arbitrary prior distributions, without necessarily coju-

gate relationships, is less of a concern given the advances in both MCMC methods and computing

power (??). As such, leveraging maximum entropy priors is not only theoretically justified, but

practically useful as well. Reliance on maximum regret or expected value of perfect information

(EVPI) estimates to serve as a proxy for information value is no longer required. Through examples
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(see §5.1 and §5.2), we have shown that these other methods of valuing information may be quite

misleading in their information valuation; they can only find an upper bound on the value of uncer-

tainty reduction. More realistic valuations of partial distributional information are possible with

our methodology. As far as we know, it is the only methodology leading to expected information

value without making distributional assumptions.

In our examples, pricing of the mean value of an unknown variable is performed; this proves to be

the most interesting/relevant information for the examples presented. However, the methodology

can value any function of the demand distribution including fractiles, other moments, and other

more obscure functions. In addition, the methodology’s use of entropy maximization to form belief

distributions for information valuation is new and novel, but other definitions of entropy or other

techniques to form belief distributions may also lead to fruitful results using similar techniques to

those presented here. Additional future research pursuing other relevant and tractable (or easily

computed) models is encouraged. Certainly, using different start and end states of information

to represent practical scenarios can lead to context-specific insights. In addition, the information

signals that we value, like the mean, are assumed to be accurate representations of the underlying

demand distribution. In reality, the information distributions will include some noise and exploring

the impact of noisy information signals is being taken up in a future paper. Another future path

for expanding the work is to address the more general tradeoff between learning and revenue/cost

optimization in multi-stage settings starting from the concept of a maximum entropy belief dis-

tribution. This work could easily serve as a springboard leading to new insights/models for the

demand learning and revenue management literature streams.

Appendix A: Proof of Lemmas

Proof of Lemma 1 First we note that from the constraint
∑N

i=1 pi = 1 that we can write u as a sum of

p2, p3, . . . , pN only since

u= 1 +

N∑
j=2

(j− 1)pj ≡ 1 + q,

and it is clear that p2 + p3 + . . .+ pN ≤ 1. We can now leverage the result from ? to find the distribution

function of q. Specifically, these authors derive the cumulative distribution function for a linear combination

of random variables
∑n

j=1 cjYj where c1 > c2 > . . . > cn > 0 and Yj are uniformly distributed over the simplex:

Yj ≥ 0, j = 1, . . . , n, Y1 +Y2 + . . .+Yn ≤ 1. Adapting their result with n=N −1, we find that the cumulative

distribution function of q is

Fq(x) =
xN−1

c1c2 . . . cN−1
−

N−1∑
j=r+1

(x−N + j)N−1

(N − j)∏N−1
i=1 6=j(j− i)

with cj =N − j, r=N −dxe and 0≤ x≤N − 1. The pdf of u is therefore F ′q(y− 1) for 1≤ y ≤N , which is

exactly Eq.(7). Q.E.D.
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Proof of Lemma 2

Eu[eTK∗Lq̂(u)] = eTK∗LEu[q̂(u)],

= eTK∗LEu {E[q(u)]} ,

= eTK∗LEu {E[p|M(p) = u]} ,

= eTK∗LE[p],

= eTK∗Lp̂,

where we have used the law of total expectation.

Appendix B: Deriving the Informed Operational Belief for the Quick-Response
Model

These are calculated as:

q̂(λ2, u) =



eλ2u(λ2u− 3λ2 + 1) + eλ2(−2λ2u+ 4λ2− 1)

2λ2(eλ2 − eλ2u)

eλ2u− eλ2(λ2u−λ2 + 1)

λ2(eλ2u− eλ2)

eλ2 + eλ2u(λ2u−λ2− 1)

2λ2(eλ2u− eλ2)


,

if 1≤ u≤ 2 and

q̂(λ2, u) =



eλ2u− e3λ2(λ2u− 3λ2 + 1)

2λ2(e3λ2 − eλ2u)

e3λ2 + eλ2u(λ2u− 3λ2− 1)

λ2(e3λ2 − eλ2u)

eλ2u(1 + 4λ2− 2λ2u) + e3λ2(λ2u−λ2− 1)

2λ2(e3λ2 − eλ2u)


,

if 2≤ u≤ 3, and are used in eq. (33).


