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We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and
a fluctuating wall. At the left-hand boundary, particles are injected onto the lattice; from there, the particles hop
to the right. Along the lattice, particles can adsorb or desorb, and the right-hand boundary is defined by a wall
particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and
cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach
coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady-state position.
In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift
indefinitely to the right. Our results are discussed in the context of nonequilibrium phases of the system,
fluctuating boundary layers, and particle densities in the laboratory frame versus the frame of the fluctuating

wall.
DOI: 10.1103/PhysRevE.76.031135

I. INTRODUCTION

Asymmetric exclusion models with a fixed [1-3], and
typically large number of lattice sites have been the subject
of much recent theoretical attention [4—15]. Biophysical ap-
plications and new fundamental understanding of nonequi-
librium steady states (NESS) have motivated many exten-
sions of the simple totally asymmetric exclusion process
(TASEP) with open boundaries. These include partially
asymmetric models, where particles can hop backward [4],
exclusion processes with nonuniform hopping rates [5,6,16],
exclusion among particles of arbitrary size [7,8,17], multi-
species exclusion processes [9-12], multichannel exclusion
processes [ 18], and exclusion processes with Langmuir-type
adsorption and desorption kinetics [13-15]. All of these stud-
ies have considered open, well-defined boundaries, where the
length of the lattice is fixed. TASEP models with one open
and one closed boundary conditions have also been consid-
ered [19].

However, applications may arise where the length of the
system is dynamically varying. The system size may vary
because a single particle pushes against a boundary-defining
wall. One example is helicase-induced opening of replication
forks in DNA processing [20]. Here, the moving replication
fork defines a moving boundary of the system. Examples of
variable-system size exclusion processes that involve mul-
tiple motor particles include mRNA translation in the pres-
ence of hairpins in the mRNA, and molecular motors pro-
cessing on elongating actin filaments. Ribosomes that
process along mRNA during translation (protein synthesis)
[6,21] often encounter a hairpin and the position at which the
hairpin starts represents a wall over which the processing
ribosomes cannot pass. The detachment rates of the ribo-
somes and the tightness of the hairpin may determine if the
ribosomes can translate the mRNA through the hairpin se-
quences. Moreover, translation often is occurring on an
mRNA strand that is still growing, not yet having completed
transcription. Actin polymerization at the leading edge of
filopodia also seems to be mediated by processing molecular
motors that may carry actin assembly components [22,23].
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The motors detach, and possibly attach, anywhere along the
growing actin filament [24]. The depolymerization of the
leading tip may be limited or enhanced by the presence of a
motor or other actin associated proteins [25,26]. Finally, a
recent model of a dynamically extending exclusion process
without Langmiur kinetics has been studied [27]. This model
has been applied to filamentous hyphae growth in fungi [28].

With the above applications in mind, we consider a
TASEP with a dynamically varying length. Specifically, we
analyze a many-particle asymmetric exclusion process with a
fixed open boundary on the left-hand side, a fluctuating
boundary on the right-hand side, and Langmuir kinetics. The
particles have a fixed injection site and can adsorb and des-
orb. A wall with an intrinsic leftward drift (representing, e.g.,
a hairpin which energetically favors spontaneous closing or
the barbed end of an actin filament that prefers depolymer-
ization) prevents the passage of particles. The particles ad-
vance and provide a pressure against the wall. For certain
attachment and/or detachment and wall hopping rates, the
system reaches a NESS in which the statistics of the wall
position are stationary. For other values of the kinetic param-
eters, no time-independent mean wall position exists. The
wall will either drift steadily towards the particle injection
site and fall off the lattice, or move indefinitely away from
the injection site, continuously increasing the size of the sys-
tem. The specific details of the stochastic process are shown
in Fig. 1. Particles are injected into the first lattice site with
rate « provided it is empty. In the interior of the lattice, each
particle moves forward with rate p only if the site ahead of it
is unoccupied. Particle attachment and detachment occur
with rate k, and k_, respectively, throughout the lattice.

The lattice length is not fixed, and N denotes the position
of the particle-confining wall that hops forward with rate w_,
and backward with rate w_ provided there is no particle to its
immediate left. The particle occupation at each site, 1 <i
<N-1, left of the wall is represented by the occupation
variable o;e€{0,1}. If w_<w,, the wall will move indefi-
nitely away from the injection site. In order to prevent the
wall from always escaping to infinity, we consider the more
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FIG. 1. (Color online) A totally asymmetric exclusion process
bounded by a fluctuating wall. Particles are injected onto the left-
most site with rate «, and move to the right with rate p. In the
interior, particles detach and adsorb with rates k_ and k,, respec-
tively, where k. <<p. The lattice is bounded on the right-hand side
by a fluctuating wall with intrinsic hopping rates w, and w_, where
wy<w_.

interesting case of an intrinsic leftward drift described by
w_>w,.

The wall position N is not fixed (even at steady state), but
rather, is determined by the intrinsic wall hopping rates, and
the exclusionary interactions between the wall and the lattice
particles. Our analysis is aimed at understanding how the
wall dynamics depend on the parameters a,k,,w,,p. In the
next section, we derive relations for the distribution func-
tions of the wall. In steady state, these relations constrain the
particle density at the wall. In Sec. III, we use mean field
theory (MFT) to solve for the density profile, and show that
the density profile obtained using mean field theory is inac-
curate near the wall. Since quantitative prediction of the wall
dynamics will require accurate determination of the particle
densities near the wall, in Sec. IV, we develop a moving-
frame finite segment mean field approach to accurately solve
for the density profile near the wall. The existence of a
steady-state solution and the dependencies of the mean wall
position (N) on the problem parameters are explored and
plotted in Sec. V.

II. WALL DYNAMICS

The net drift of the wall is the difference between its
forward and effective backward hopping rates. The effective
backward hopping rate depends on both the intrinsic back-
ward hopping rate w_, and on the occupancy of the site im-
mediately to the left of the wall since a particle there will
block the wall’s backward motion. The wall’s rightward hop-
ping is never impeded. The probability of finding a particle
immediately to the wall’s left varies with its position, thus,
the wall dynamics are position dependent. Define Qy() as
the probability that the wall is at position N at time ¢, and
Q,(1) as the joint probability that the wall is at position N at
time ¢ and the site just before the wall is empty. The wall
dynamics obey

ION)

a W—Q;\m - W_Q;'v -~ w,On+w,On 1, (1)

and the moments of the wall position can be formally ex-
pressed as
k-1

§<Nk> =2 (W Q= w, 00> (- 1)"'f<’f)Nf. )
t N=0 Jj=0 J

Although one cannot find Qy or Q explicitly without solv-
ing the full exclusion problem, we can take k=1 in (2) to
determine the mean wall velocity via
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§<N> = w3 Ot w,. 3)
t N=0

If the mean wall position is time independent, =3_,Ox
=w_/w_, and the expected occupancy of the site immediately
preceding the wall is

(o) =1-3 Qf=1-"*, (4)
N=0

w_
We show in Sec. V B that there are some parameter regimes
in which (4) cannot be satisfied. For these parameter values,
there exists no time-independent mean wall position. How-
ever, one can still use (3) to determine the relevant mean
wall dynamics. The preceding analysis suggests that it may
be more natural to define sites near the wall by their position
relative to the wall than by their absolute position on the
lattice. To avoid working in both frames of reference, in the
next section, we will begin by considering the limit in which
the wall hopping rates are small compared to other rates in
the problem (p, k,, and k_). In this limit, the wall dynamics
are slow compared to the particle dynamics, and we will
assume that the wall frame is stationary.

III. MEAN FIELD SOLUTION OF DENSITY PROFILE

In the w./k,,w./p—0 limit, we expect the wall to be
nearly stationary. Mean field equations can be derived by
ensemble averaging the rate equations for the occupation
variables o, and ignoring correlations ({o;0;) =~(0;)}(0})).
Upon defining the mean occupation s;=(c;), the mean field
equations for a fixed (w,=0) wall system in NESS are

ds.
ﬁ ==s5;(1 =si) +5:(1 =) —k_s; + k(1 -5,) =0, (5)
dSl
o a(l =s)—k_s;—s;(1=s5,) +k,(1=5)=0, (6)
dsy_
a]’\; = —k_sy_y + k(1 =sy_p) + sya(1 =sy-1) =0, (7)

where the adsorption, desorption, and injection rates have
been normalized by p and time has been rescaled by
p~'—hence, k., a, and ¢ in (5)—(7) are dimensionless.

However, in order to use condition (4), we need expres-
sions for particle density at sites defined by their distance
from the wall. In the fluctuating frame of the wall, we use the
notation 5;=sy_;. Upon rewriting (5)—(7) in the wall frame,
we find

ds;
Etl =—(1+ W+)5j(1 - E,'_1) +[1+(1 _EI)W—]E]H(I _Ej)
k(1) —w_(1 =5)(1 5,5,

+w,(1 =55, =0, (8)
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dsy-i

i a(l = 5y_1) =k Sy_g = Sy (1= Syoo) + k(1= 5y)

=0, )

-
% k5 4k, (1=5) + (1 + w51 =5,) = 5w,

=0. (10)

As expected, (8) and (10) reduce to (5) and (7) in the w,
=0 limit. If the position of the wall were fixed, we could
simply use the iteration given by (5), along with boundary
conditions (6) and (7) to solve for the density profile s;.

Now consider a moving wall problem. Because (N) is
undetermined, we need three conditions to solve (8). In ad-
dition to the two boundary conditions (9) and (10), we re-
quire a third condition, §;=1-w,/w_, to determine (N). This
third boundary condition fixes 5,; §, is set by (10), and we
can use (8) to iterate forward in j as many times as required
toward the injection site, until (9) is satisfied. The number of
iterations required to satisfy (9) determines the mean posi-
tion, (N), of the left boundary, and hence the NESS size
reached by the system. Although (8) was derived in the wall
frame, the resulting density profile is nearly identical to a
stationary frame profile derived from (5) when s; is not vary-
ing rapidly with site i. See the Appendix for further discus-
sion.

For standard particle-conserving TASEP models, away
from boundaries, MFT predicts the particle densities to a
very high accuracy [2]. A conservation law for the particle
density can be used to fix the end densities to their exact
values so that the MFT also performs well near boundaries
[16]. In Fig. 2(a), we plot the density profiles from Monte
Carlo (MC) simulations and mean field recursion relations
for the simple TASEP (k,=0) with a fixed number of sites,
N=10 000. Differences in the density profiles are evident in
the insets.

Because we include particle adsorption and desorption
through Langmuir kinetics, there is no conservation law for
the particle density. In this case, the boundary densities are
not fixed and we see in Fig. 2(b) that simple mean field
calculations of the boundary density can differ appreciably
from the values found from Monte Carlo simulations. How-
ever, MFT still matches simulation results in the bulk where
s; varies slowly. In the following section, we use an approach
that couples explicit enumeration within a finite segment of
sites to the mean field results accurate outside the segment.
This finite segment mean field theory (FSMFT) includes par-
ticle correlations within a segment of sites adjacent to the
wall.

IV. FINITE SEGMENT METHOD

We have shown that mean field theory does a poor job of
predicting the profile s;,~y_; near the wall when there is a
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FIG. 2. (Color online) A comparison of density profiles derived
from Monte Carlo simulation and MFT. (a) The MFT and MC
density profiles for conserved particle TASEP are compared («
=0.6, B=0.9, N=10 000). Despite differences between MFT and
MC in the boundary layers, the particle density at the ends (i=1,i
=10 000) are matched through particle conservation. Insets show
the left and right boundary layers in detail. (b) For a TASEP with
Langmuir kinetics (with k_=0.01, N=300, p=1, and k,,w,,w_=0),
the MFT density profile can be appreciably different from the MC
results, especially near the boundaries.

boundary layer. To more accurately compute the particle den-
sity in this region, we will solve the master equation for a
finite segment of m sites preceding the wall. First, we intro-
duce some notation to explain the mechanics of the FSMFT.
For the binary string (oy_,--.,0n_2,0N_1), corresponding
to the occupancy of sites in the finite segment we define the
state of the segment as the base 10 value of the string. For
example, for m=2 sites just left of the wall, we have four
possible combinations for the occupancies (00), (01), (10),
and (11) corresponding to states i=0,1,2,3, respectively. If
P; is the probability that the finite segment configuration is in
state i, the master equation is J,P;=M;;P; where M;; is the
transition matrix. In the m=2 case,
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—(1+w.)s" =2k, k_ k_+w, 0
k —(wo+k_+k)—s" l+w_(1-s" k_
Vo . (v, +k_+k,) (1-5) ’ a1
(1+w)s +k, w, —(we+w_+1+k_+k) k_+w,
0 k,+s" k,+w_s" —2k_—w,

where s*={oy_,_,) is the mean occupancy in the lattice site
just to the left of the segment. The mean occupancies in the
finite segment can be calculated from M in the following
way. First, the eigenvector, P, corresponding to the eigen-
value zero is computed. The vector P© normalized such
that E;"PSO):l corresponds to the stationary probability dis-
tribution, i.e., 3P©=0. Let v be a m X 2" matrix where the
columns are the ordered state vectors. The mean densities are
then given by (Sy_p» ... »Sy_2.5y_1) =VP©.

For every value of s*, FSMFT can be used to compute the
mean densities Sy_,,, ... ,Sy_2,Sy_1- In particular, it estab-
lishes a one-to-one correspondence between s* and sy_;,

syop=F(s"waky). (12)

Our calculations indicate that F(s") is always a monotoni-
cally increasing function of s”, as shown in Fig. 3(a). Com-
paring the density profiles near a fixed wall (w,=w_=0), Fig.
3(b) shows that using FSMFT (with m=5) significantly im-
proves our prediction of the particle density near the wall
over that obtained using simple (m=1) MFT. To calculate
(N) for a fluctuating wall (w_>w, >0), we first solve for the
profile of a segment of sites adjacent to the wall. From (4),
when the wall attains a steady-state position, sy_;=1
—w,/w_. Using (12), we find the value of s satisfying 1

—w,/w_=F(s"). Defining this particular value of s" as Seqr WE
then use the recursion relation given by (8) to solve the den-
sity profile to the left of the finite segment. Using the values
of sy_,, and quEsN_m_l from the FSMFT as starting condi-
tions for the recursion equations, we iterate to the left until
the left boundary condition (9) is satisfied. In summary, the
finite segment mean field theory is implemented by the fol-
lowing steps:

(i) For a given s", solve for the normalized eigenvector
corresponding to the zero eigenvalue of the 2 X 2™ transi-
tion matrix M ij(s*).

(ii) From the zero eigenvector, express the mean density
sy_; at the site nearest the wall as a function of s*, giving
relation (12).

~ (iii) For a static wall NESS, set sy_;=1-w,/w_ and find
s:q t£1at yields zero net wall drift by using 1-w., /w_
=F(se'q;wi,ki). .

(iv) Starting with s~m+]=s:q (and §5,,=sy_,,) iterate using
the simple mean field equation (8) until Eq. (9) is satisfied.

(v) The number of iterations required determines the
mean wall position ((N)= number of iterations +m+2) as a
function of the rate parameters through the starting value s:q.

We expect the predicted results from a moving-frame
FSMFT to be in good agreement with those from MC simu-
lations. This is because in regions where s is slowly varying,

the mean field equations describing the density profile in the
wall frame and in the laboratory frame yield nearly identical
profiles. This can be seen from the continuum equations, as
will be discussed in the Appendix. In these regions, accurate
estimates of the mean wall position can also be obtained
using the continuum approximations to (8), provided (N) is
large. When state enumeration of a larger segment is used,
more of the correlations within the density boundary layer
are taken into account and more accurate results are ex-
pected. Provided that most of the regions with large gradients
in density are captured by the finite segment, the results will

1 N T TR R S R
0.8 o
0.6 i
*
~—
= 0.4 o
0.2 L
0 — T T T " T T T T T
0 0.01 0.02 0.03 0.04 0.05 0.06
(a) 5
1 1 . 1 . 1 . 1 .
. +
0.8 —— Mean Field Theory L
— FSMFT
] ¢ Monte Carlo
0.6
el
0.4+
0.2
0 T T T + T
292 204 296 298 300
(b) position i

FIG. 3. (a) F(s") is plotted with parameter values k,=0, k_
=0.01, w,=0.005, w_=0.01. (b) The finite segment method predicts
the boundary layer profile significantly better than mean field
theory. Here, the final 10 sites of a fixed-wall profile (N=300) are
plotted. The parameters k_=0.01, k,=0, and a=1 were used.
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be very accurate. The incremental accuracy achieved as
larger segments are used has been discussed in a different,
but related system [6]. In the subsequent analyses, we use a
five-site (m=5) FSMFT—generating a 2°X2° eigenvalue
problem in the process—and self-consistently solve for the
densities away from the boundary layer. This choice of seg-
ment size is sufficient to yield accurate results for all param-
eters explored.

V. RESULTS AND DISCUSSION

A. Time-independent mean wall positions

We first consider regimes in which the wall acquires a
static mean position in NESS. Using Monte Carlo simula-
tions and FSMFT, we study the dependence of the mean wall
position on the injection rate «, particle adsorption and de-
sorption rates k,, and the wall hopping rates w,. We can use
analytic solutions of the bulk continuum equations in order
to understand parameter dependencies of our model. Al-
though mean field theory poorly describes our system in the
boundary layers where the profile varies rapidly, away from
boundary layers, simple MFT is accurate. In these regions, to
guide our analysis, we will use the continuum limit of the
mean field equations. We define e =1/N,, where N is a char-
acteristic number of lattice sites (to be derived below) and
x=(i—1)/N, as a relative position along the lattice. As
shown in the Appendix, the NESS density profile obeys

e2s—1)s'(x) +k, — (k, +k)s+0(H=0  (13)

in both the laboratory and wall frames of reference. Upon
integrating, we obtain the implicit equation

(k, — k)nlk, — (k, + k_)s|- 2k, + 2(k, +k_)s  x c
‘e
&

(ky +k_)? B
(14)

where C is a constant of integration. In the continuum de-
scription, the entrance site is at position x=0, the wall’s po-
sition is L, and the mean wall position is (L)= e(N). We can
use (14) to understand the behavior of the mean wall position
(N). First, note that the left-hand side of (14) scales as (k,
+k_)7!. Since £ '=N, scales as (k_+k,)”!, we define N,
= (k,+k_)~'. For a continuum description to be useful, N,
must be large, so k. must be small.

Equation (14) gives an implicit formula for the bulk den-
sity, which we denote by sg(x), in terms of the adsorption
and desorption rates, k, and the integration constant C. The
injection rate « determines C, and along with the wall hop-
ping rates w,, determines the mean wall position. As shown
in the Appendix, the solution near the left-hand boundary
varies slowly when @=0.5. Furthermore, if k_<a, we can
approximate s;=s, in (6) to conclude that s(0)=~ «. This
simplified condition can be used to determine C in (14).

When «=0.5, a boundary layer arises on the left-hand
side [this can be seen in Fig. 4(a)]. In this regime, s(0) can
no longer be approximated as a, and sg(x) becomes invalid
near the injection site. While sz(x) is still a good approxima-
tion to the density profile outside the boundary layer (where
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FIG. 4. (Color online) Simulations were performed with w,
=0.001, w_=0.01, k_=0.01, and different values of a. In (a), pro-
files for three simulations are plotted with their mean wall positions
aligned. When @=<0.5, s(0) =~ a. When @=0.5, sz becomes multi-
valued and there is a boundary layer on the left-hand side. Within
the boundary layer, a small change in the position results in a large
change in the particle density. Thus, in (b), where (N) is plotted as
a function of «, large changes in « result in small changes in (N)
when @=0.5. Also shown is the prediction from (16) with szq
=0.026, determined by FSMFT.

5s=0.5), there is no straightforward, analytic way to calculate
C when @=0.5. In Fig. 4(a), when a=1, C is used as a
single fitting parameter and is determined empirically such
that in the bulk, sz(x) approximates the density profile ob-
tained using MC simulations. The mean wall position, (L), is
found through the relation sz({(L)—(m+ 1))=qu where szq is
found using an m-site FSMFT and is the value of s* that puts
no net drift on the wall.

Figure 4(a) shows results from MC simulations, shifted so
that the mean wall positions are aligned at (N)=225, which
is the mean wall position when a=1. While the density pro-
file has a sharp boundary layer at the wall in the wall frame,
in the laboratory frame, the boundary layer is smeared out
due to wall fluctuations. This results in the broad peaks cen-
tered on the mean wall position shown in Fig. 4(a). The outer
solution s(i/N,) with Ny=(k,+k_)~" is shown by the dotted

031135-5



NOWAK, FOK, AND CHOU

curve. The close agreement between the MC data and sg(x)
suggests that dropping the O(g?) term in (13) to obtain sp(x)
produces an excellent approximation to the mean particle
density, provided a=<0.5. Note that «, through C, simply
shifts s5(x) to the left or right sides; thus, when we vary only
a and plot the resulting density with the mean wall positions
aligned [as they are in Fig. 4(a)], the profiles collapse onto
the same curve.

We can also use (14) to predict the mean wall position as
a function of the injection rate & when « is not too large. For
simplicity, consider k,=0—the analysis for k, #0 is analo-
gous. Using the simplified condition s(0)=a in (14), we have

Co 2a - ;{n(ak_) .

(15)

Now, using the relation s:q=sB(<L)—s(m+1)) and (15) and
(14) becomes

1 ZS:
(N):—ln(%e*q>+m+1. (16)
k e eq

The dependence of (N) on « is shown in Fig. 4(b), pre-
dicted using four different methods. Simple MFT (m=1, dot-
ted curve) performs poorly relative to MC simulations (open
diamonds). The results from FSMFT with m=35 (solid curve)
agree very well with the MC data for all values of a. The
solution of (16) (dashed curve) performs reasonably well
provided « is not too large. When @=0.5, s(0)=« is a poor
approximation to (6) and the resulting prediction of (N) suf-
fers. In fact, the slope sy diverges when sz=0.5, which can
be seen from (13). When @=0.5, there is a boundary layer
on the left-hand side with width O(Ve) (cf. Appendix). As a
result, increases in a above 0.5 will increase the height of the
boundary layer, but will not significantly change the mean
wall position, and (N) becomes insensitive to changes in «
[32].

We now discuss how changes in the wall hopping rates
can affect the wall position. In Fig. 5(a), for a fixed value of
w,, one sees that an increase in w_ increases the value of S:q'
Our FSMFT predicts that given values of w, and w_,
Seq Must satisfy 1—w,/w_=F(s.;w.). For small values of
Wa, Flsgg,ws) zF(qu,O) ~1-w,/w_, suggesting that s:q de-
pends primarily on the ratio w,/w_, with only a weak depen-
dence on the individual wall hopping rates. Since F' is a
monotonically incireasing function, qu increases with w_/w,.

A change in s, induces a change in the mean wall posi-
tion, shown in Fig. 5(b). Again, this is consistent with our
theory since (L) must satisfy sB((L>—8(m+1)):s:q. In the
special case a=<0.5, one can use (16) to predict (N) directly,
given s:q. When = 0.5, one either must solve the full set of
discrete MFT equations (8) and (9)—or the equivalent con-
tinuum equations (A1) and (A2)—coupled to a finite seg-
ment, to obtain (N). Our results from solving the discrete
equations are shown in Fig. 5(c). Using simple MFT (m
=1) without a larger finite segment generally results in poor
predictions for (N).

A more complete understanding of the wall dynamics can
be garnered by analyzing the wall fluctuations. For simplic-
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FIG. 5. Boundary effects near the wall determine wall position.
In (a), s:q is determined empirically from MC simulations captured
in the wall frame and numerically using the finite segment method.
In (b), MC simulations are plotted in the laboratory frame. In (c),
the occupancy of the last site in the wall frame sy_j=1-w, /w_ is
plotted as a function of the mean wall position (N). The parameters
a=1, k_=0.01, k,=0, and w,=0.001 were used.
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FIG. 6. Probability density of the wall position, Q(L), is plotted
as a function of the deviation from the mean wall position (L). The
parameters a=1, w,=0.005, w_=0.01, k_=0.01, and k,=0 yield
(Ly=350. The distribution predicted from (18) is a close approxi-
mation to that derived from MC simulations.

ity, we consider the continuum description in which the
wall’s motion can be approximately described by a diffusion
constant D=g’w, and a position-dependent drift, V(L). If
one assumes that the wall fluctuates within a harmonic “po-
tential,” this drift takes the form V(L)=-a(L-(L)), where
a=-(dV/dL)|y,. This approximation effectively closes (1)
by expressing the effects of conditional probability, Qy, in
terms of a drift. For L= (L), the probability density of the
wall’s position, Q(L) (the continuum analog of Qy), can be
approximately found from the solution of

>0

IQ(L,1) Y
a aL*’ (17)

1%
aa_L[(L_ L)W ]+D

Upon imposing the normalization [, Q(L)dL=1, we find the
steady-state solution to (17),

a 2
O(L)= 5y —e P, (18)

where a is given by

av
dL

a

’ v reJE
== SB(<L> - 8(m + 1))<_>F (seq)' (19)
(L oF
The drift velocity V(L) can be inferred from e(w,—w_(1
—sy-1)) and (12), which relates the mean occupancies at po-
sitions L and L—¢e(m+1),

V(L) =e(w, —w_+ W_F(S*(L —e(m+ 1)))) (20)

By defining the drift V(L) using the steady-state relation F,
we have implicitly made an adiabatic approximation where
the particles have reached a NESS for any wall position L.
We can also estimate the variance of the wall position by
using 3?~D/a, and (19) for a. Upon differentiating V(L)
=g[w,—w_+w, F(sp(L—e(m+1)))], we find (dV/IF)=ew_.
We can estimate (9F/ds") o, using the finite segment
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FIG. 7. Four possibilities for the wall motion. Arrows indicate
the mean wall motion if it is at position i. (a) The wall could have
no net drift and a stable fixed mean position, with small perturba-
tions to the wall position decaying over time, (b) the wall could
have no net drift, but an unstable fixed mean position, with small
perturbations to its position causing it to drift indefinitely to the
left-hand or right-hand sides, (c) the wall could drift indefinitely to
the left-hand side, and (d) the wall could drift indefinitely to the
right-hand side. The outer solution sz(x) is shown by the dotted
curves.

method, and we know sp({(L)—e(m+1)) exactly from (13).
Assuming that (L?)=~ [*_dLL*>Q(L), we expect the variance
of the wall position to be approximately
D
SW_F'(s:q)sl’g«L) —e(m+1))
(21)

32=(L?%) (LY =~

In Fig. 6, we plot an example distribution Q(L) found using
both Monte Carlo simulations and from (18). We have
aligned the distributions such that their maxima coincide.
Using (21), the standard deviation %=0.1215 is in good
agreement with the standard deviation found from MC simu-
lations 2 =0.143. Since X/{L)~0.14/3.5<1, the wall is
fairly stable and not likely to fall off the injection end of the
lattice except on exponentially long time scales.

B. Time-dependent mean wall positions

In the preceding section, we explored the dependence of
the statistically stationary mean wall position on the model
parameters. However, a stable mean wall position may not
always exist. In this section, we use a FSMFT to determine
the stability of the wall and the conditions under which a
permanent net wall drift might arise.

The motion of the wall can be understood completely in
terms of the outer solution sz(x)—given by inverting (14)—
and the particle density inside the finite segment. First, we
consider some important properties of sgz(x). Equation (14)
admits two branches to the bulk solution, sgz(x), because the
argument of In[||] can either be positive or negative. The
argument approaches zero as s approaches sp=k,/(k,+k_),
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the density arising from Langmuir kinetics alone. When we
invert x(sg) to find sgz(x), we see that for increasing x, one
branch of the density profile sz(x) approaches sy asymptoti-
cally from below, and a second branch approaches s asymp-
totically from above. A representative sgz(x) is plotted in Fig.
7. Notice that s'(x) >0 in the lower branch, and s'(x) <0 in
the upper branch [33]. If a> sy, the steady-state density pro-
file will lie on the upper branch and the bulk density will
have values satisfying st <sp(x) <ea. If the injection rate «
<sr, the steady-state density profile will lie on the lower
branch and the bulk density will attain values a<<sg(x)
<s r-

We are now ready to derive conditions for the existence of
a fixed mean wall position and stability criteria. In the adia-
batic approximation (20), m is the number of sites in the
finite segment and e=1/N,. This equation expresses the ve-
locity of the wall at position eN=L in terms of a particle
density at position (N—m—1)e. Since s* is the value of s"
that puts no net drift on the wall, i.e., w,—w_[1-F (seq)] 0,
we can expand V(L) from (20) in a Taylor series about s, 4 to
find

V(L) = ew_[s"(L-e(m+1)) - szq]F’(s:q). (22)

Because F' is a monotonically increasing function and w_
>O the wall drifts to the right hand side if s*(L e(m+1))
>s , to the left-hand side if s"(L—e(m+ 1))<s and has a
ﬁxed mean position if s"(L—g(m+1))= s L If We now as-
sume that m is sufficiently large so that the point L—g(m
+1) lies outside of the boundary layer, then s*(L—g(m+1))
can be well approximated by the outer solution given by
sp(x), ie., sp(L—e(m+1))=s"(L—e(m+1)). Furthermore,
we know that sg(x) satisfies o< sz<sp on the lower branch
and sp<sp=<a on the upper one. Therefore, we conclude
that if szq & [a,sr], the wall can never have a fixed mean
position. In particular, for all z,

VIL()]>0

. *
if Seq < ST,

<0 if 5, > a.sy, (23)

corresponding to an indefinite rightward and leftward drift,
respectively [cf. Figs. 7(d) and 7(c)]. If a fixed mean position
does exist, we can understand its stability by considering the
sign of dV/dL. If this quantity is negative (positive), the
position is stable (unstable). These possibilities are summa-
rized in Fig. 7. By differentiating (22), we have

T ~ sw_F'(qu)sé(L —e(m+1)). (24)
Hence, if a mean wall position exists at L, a necessary and
sufficient condition for its stability is

sp(L—e(m+1)) <0. (25)

In particular, when there is no adsorption (k,=0), the bulk
solution sgz(x) decreases monotonically from the injection
site and any mean wall position (L) induced by the kinetics
will be deterministically stable.
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FIG. 8. In (a), we plot the density profile near the wall from
FSMFT and from MC simulations. We find that sy_; is less than
0.9=1-w,/w_, the value required for the wall to have zero drift. In
(b), the position of the wall N(7) found from MC simulations is
plotted with the expected N(z) calculated using FSMFT. Parameter
values are «=0.01, w,=0.001, w_=0.01, k,=0.0001, k_=0.01.

Figures 8 and 9 compare the result (20) with simulation
data. Figure 8 shows the results of a MC simulation in which
the wall particle has a mean leftward drift. In Fig. 8(a), the
density profile in the wall frame found from MC simulation
and that predicted using FSMFT are shown. Far from the
injection site sz asymptotes to sy. Thus, when the wall starts
at a position Ly> 1, we assume s (L—&(m+1))=sp and the
wall’s velocity V is independent of its position L. Since
sy <1=—=*, we expect, from (20), that the net drift on the
wall w111 be negative. In Fig. 8(b), we compare N(¢)
=L(t)/ e found from MC simulations with that calculated as-
suming L(f)=Ly+Vr where V is calculated using (20) in the
large L limit. Similarly, Fig. 9(a) shows a density profile
from MC simulation in the case where the wall acquires a
mean rightward drift. In Fig. 9(b) both MC simulations and
FSMFT show that in the wall frame, the occupancy of the
site adjacent to the wall is greater than 1— —, and we expect
a mean rightward drift. In Fig. 9(c), we see that this is the
case, and the predicted time course N(z)=L(t)/e is compared
with N(¢) found using MC simulations.
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FIG. 9. When s[~>szq and a> S:q, the wall escapes. In (a), far
from the injection site, the particle density approaches s=0.029 as
predicted by analytic theory. In (b), we use FSMFT and MC to find
Sy_1>0.9=1-w,/w_, the value for which the wall’s drift would be
zero. In (c), we show N(r) to compare the escape velocity calculated
from finite segment analysis to the escape velocity found in simu-
lations. Although the value of sy_; found by FSMFT differs from
that found in MC simulations by only 0.4%, the calculated veloci-
ties differ by 17%. Parameter values were @=0.3, w,=0.001, w_
=0.01, k,=0.0003, and k_=0.01.
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In contrast to the case of a static mean wall position, when
the wall has a position-independent velocity, V, the diffusion
constant D of the wall is given by D=g}w,—w_
+w_F(sr)]/2. The probability density Q(L,?) describing wall
position then follows

0_ 70 0

= - R 26
ot aL* " dL (26)
the solution of which is
2
Q(L,t) =— e—[(L - Vt- L) /4Dt]. (27)
2\NaDt

We now discuss our results in the context of the phase
transitions [13,15,29] of the interior density. When Langmuir
kinetics is coupled to a fixed domain TASEP with open
boundaries, qualitative properties of s(x) can change abruptly
when adsorption and/or desorption and injection and/or ejec-
tion rates vary. For example, an interior boundary layer sepa-
rating regions of low and high density can suddenly disap-
pear, replaced with a single region of high density as the
injection rate « is increased.

Our moving wall TASEP system coupled with Langmuir
kinetics does not support the phase structure seen in
[13,15,29]. Because we limit ourselves to k, <k_, we can see
from (13) that when sgz(x) >0.5, (corresponding with a high
density region), sz(x) >0. From (25), the wall cannot have a
stable equilibrium position within the high density region,
and we do not find time-independent density profiles with
low to high density interior shocks (a low-high shock), as is
observed in [13,15,30]. In fact, Refs. [14,29] show that high-
low shocks are never stationary in an exclusion process with
Langmuir kinetics. Therefore, interior shocks are never
stable in our model system. In our problem, the presence of
a wall that responds to particle dynamics relaxes any shocks
in density that may otherwise occur in the interior, forcing
them to the left or right boundaries.

VI. SUMMARY AND CONCLUSIONS

Our model of an asymmetric exclusion process with
Langmuir kinetics and a movable right boundary, and the
corresponding results provide a guide to understanding bio-
physical processes in which many processing molecular mo-
tors push against a load. The detachment and attachment rate
of the motors, as well as the injection rate at the entry site,
determine the load the motors can support. If a static load
particle position is reached, we see that the mean wall dis-
tance from the injection site saturates upon increasing injec-
tion rate « past about 0.5. The analyses can be used to pre-
dict whether biological processes such as ribosome
movement and filopodia-filament extension continues or
reaches a static configuration.

Within our model, we found four parameter regimes. In
the first regime, (sF<qu< «), the wall attains a stable equi-
librium position for the wall. In the second regime (a<s:q
<sr), there is an equilibrium, but unstable mean wall posi-
tion. In the third and fourth regimes (s:q & [a,sr]), the wall
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will always feel a net drift to the right and left, respectively.
In the latter case, the wall will fall off the lattice in a time
scaling linearly with the starting position. When there is a
stable equilibrium wall position, we can find the mean wall
position (N) as a function of the particle injection rate «, the
adsorption and desorption rates k., and the intrinsic hopping
rates of the wall w,. Determination of (N) requires accurate
evaluation of the particle density near the wall. Using a hy-
brid finite segment and/or mean field approach in the refer-
ence frame of the fluctuating wall, we accurately determine
the particle density near the wall, and use this to determine
the wall’s steady-state position.

When there is no steady-state wall position, the finite seg-
ment mean field approach allows us to estimate the steady-
state velocity of the wall far from the injection site. In our
analysis, we assumed that the particle density has reached
steady state, thus ignoring the initial particle density profile
and wall position. Even in regimes where we expect an equi-
librium wall position at steady state, if the wall is initially
near the injection site, and the particle density is initially
very low, we would expect the wall to fall off the lattice
before reaching its equilibrium position. The times of falling
off the lattice may be treated with extensions of large devia-
tion theory as suggested by Fig. 6 [31]. A number of inter-
esting extensions of the free boundary problem arise. For
example, we expect for certain parameter regimes that slow
bottleneck sites [6] can attract the fluctuating wall. These
features and other applications to biophysical systems de-
serve investigation.
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APPENDIX

We can take the continuum limit of (5) by defining x=(i
—1)e where ¢ is the lattice spacing. We find,

2

oas(x,t
M =es'(2s-1)+ %s"—k_s+k+(l -5)=0.

ot
(A1)

The left-hand boundary condition, (6) becomes

ds(0,1)

P =af[l1-5(0)]-k_s(0)+k,[1-5(0)]-s(0)[1-s(e)]

=0. (A2)
When significant changes in the solution near x=0 vary over

a length scale that is >0O(e), this equation is well approxi-
mated by
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9s(0,1)
ot

=af1-15(0)]-k_s(0) + k. [1—s(0)]

—s(0)[1 -s(0) —es'(0)]
=0. (A3)

The right-hand boundary condition analogous to (10), be-
comes

ds(L,t)
ot

=—k_s(L)+kJJ1-s(L)]+s(L-¢)[1-s(L)]

+w_s(L—¢g)[1-s(L)]-w,s(L)
=0. (Ad)

Again, when significant changes in the solution near x=L
vary over a length scale that is >O(e), this equation is well
approximated by

asg;‘t) == k.s(L) +k,[1 = s(L)]+ [s(L) - es"(L)][1 - s(L)]

+w_[s(L)—es"(L)][1 - s(L)] —w,s(L)
=0, (A5)

at the free boundary L(f), where s(L) defines the particle
density at the position just to the left of the wall. In the wall
frame, the continuum limit of Eq. (8) is

2
_&s(;z,t) =e{w, = [1+w_(1=sy_)]}s"(1-25) + %[1 tWy

+w_(1=sy_)]s" —k_s + k(1 —5). (A6)

In the wall frame, an interior particle shifts to the right-
hand side when it either hops to the right, which it does with
a (normalized) rate of unity, or when the wall hops to the left,
which it does with rate w_(1—sy_;)=w, in steady state. Simi-
larly, a particle shifts to the left-hand side when it hops to the
left or when the wall hops to the right, which it does with
rate w,. In the bulk, where s’ (x)=0(1), the diffusive term is
small and can be neglected. The only term we retain that
depends on hopping rates is (w,—1-w,)(1-2s)s’, which is
equal to the value of the corresponding term in the laboratory
frame, —(1-2s)s’. The bulk density is described in both
frames by

es' (1 =2s)+k_s—k,(1-5)=0. (A7)

In our problem, the second-order term in (A1) becomes im-
portant in the right-hand boundary layer, and in the left-hand
boundary layer when there is one. On the left-hand side,
when s=0.5, one cannot assume that s varies slowly. Mak-
ing the change of variables x=¢&X (£€<<1), Eq. (A1) becomes

82

&

—s'2s=1)+—=s5"-k_s+k,(1-5)=0;

UL (1-9)
furthermore, we know that & is necessarily on the order (k_
+k,). Since the first-order term becomes very small as s
— 0.5, the second-order term must match either the adsorp-

(A8)
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tion or desorption term. In ihis case, the second-order term
will be balanced when §_~ \e. Therefore, we expect a bound-
ary layer of width O(Ve) to arise near the injection site if
a>0.5, sp<0.5 or if «<0.5 and s>0.5.

While the boundary layer on the left-hand side can be
captured using a second-order continuum equation, the
boundary layer on the right-hand side cannot. In Eq. (A1),
we kept terms only up to order &2 in our expansion s(x+&)

=s(x)+ss’(x)+%zs”(x)+%3s(3)(x)+... . The boundary layer
on the right-hand side arises to join the outer solution with
the boundary condition s(L)=1-w,/w_. Making the substi-
tution X=x/§, and matching first- and second-order terms in
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(A8), we find that £&=0(g). In the boundary layer on the
left-hand side, s=0.5, and we assume that the term &(2s
—1)s’ is relatively small. When we match the second-order
term, &s”/2, with the adsorption and desorption terms, k(1
—s) and k_s, we find that £~ V’;. However, on the right-hand
side, we cannot assume that s=0.5. We therefore assume
that the leading terms are £(2s—1)s’ and es”/2, which leads
us to conclude that the wall-hugging boundary layer has
width of O(e). In this case, all terms &"’s”)(X)/n! in the
Taylor expansion of (A4) are O(1), and continuum theory
breaks down.
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