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The surface of a nanostructure relaxing on a substrate consists of a finite number of interacting steps and
often involves the expansion of facets. Prior theoretical studies of facet evolution have focused on models with
an infinite number of steps, which neglect edge effects caused by the presence of the substrate. By considering
diffusion of adsorbed atoms �adatoms� on terraces and attachment-detachment of atoms at steps, we show that
these edge or finite height effects play an important role in the structure’s macroscopic evolution. We assume
diffusion-limited kinetics for adatoms and a homoepitaxial substrate. Specifically, using data from step simu-
lations and a continuum theory, we demonstrate a switch in the time behavior of geometric quantities associ-
ated with facets: the facet edge position in a straight-step system and the facet radius of an axisymmetric
structure. Our analysis and numerical simulations focus on two corresponding model systems where steps repel
each other through entropic and elastic dipolar interactions. The first model is a vicinal surface consisting of a
finite number of straight steps; for an initially uniform step train, the slope of the surface evolves symmetrically
about the centerline, i.e., the middle step when the number of steps is odd. The second model is an axisym-
metric structure consisting of a finite number of circular steps; in this case, we include curvature effects which
cause steps to collapse under the effect of line tension. In the first case, we show that the position of the facet
edge, measured from the centerline, switches from O�t1/4� behavior to O�t1/5� �where t is time�. In the second
case, the facet radius switches from O�t1/4� to O�t�. For the axisymmetric case, we also predict analytically
through a continuum shock wave theory how the individual collapse times are modified by the effects of finite
height under the assumption that step interactions are weak compared to the step line tension.
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I. INTRODUCTION

Understanding the fundamental properties of small sup-
ported crystal mounds is important for applications in
catalysis1 and nanoparticle growth.2 However, characterizing
the morphology of nanoscale structures is still a challenging
problem and our ability to control their evolution is fairly
limited.3

As fabricated structures become smaller, finite-size effects
associated with the crystal’s geometry become more impor-
tant. The steps that bound each monolayer in the structure
are usually closed and have a finite radius of curvature. As a
result, in the absence of material deposition, the perimeter of
a single isolated step generally shrinks—a phenomenon that
is well understood in terms of a step line tension.4,5 In addi-
tion to step curvature, another quantity that is clearly finite is
the number of monolayers that make up the nanostructure.
However, the effects of finite height have received much less
attention in theoretical treatments compared to infinite and
periodic surface features. �An infinite surface feature is one
that has an infinite number of monolayers.� Furthermore, the
main results to date apply only to crystals at equilibrium,
where there is no facet motion. The combined effect of finite
height and facet evolution remains unexplored.

For crystal surfaces undergoing relaxation below the
roughening transition temperature, facets expand due to the
sequential collapse of extremal steps under the influence of
line tension.5,6 �An extremal step is one that has only one

neighboring step.� For axisymmetric structures with a �circu-
lar� facet, scaling laws of the form r�t�=O�t�� are often
observed.2,7–9 Here, r�t� is the facet radius, t is time, and the
exponent � depends on the initial structure’s shape and the
dominant transport process.2,10 However, theoretical deriva-
tions of these scaling laws ignore the effect of the substrate
and are therefore valid only for infinite structures. On the
other hand, most studies of supported finite structures as-
sume an equilibrium shape under which facet motion is ab-
sent altogether.11–14

In this paper, we study the facet evolution of crystal struc-
tures relaxing toward planarity when the number of steps is
finite. Our models are based on the Burton-Cabrera-Frank
�BCF� theory15 for vicinal surfaces. The key microscopic
processes involve adsorbed atoms �“adatoms”� diffusing on
terraces between steps and atoms attaching to and detaching
from step edges. By balancing the flux of adatoms in and out
of each step edge, one can write down equations of motion to
describe the morphological evolution of the vicinal surface.
Two commonly studied step geometries are the straight-step
model16,17 and the axisymmetric model8,9,18 �see Fig. 1�. Our
main results show that very different scaling properties arise
when only a finite number of steps are present in the struc-
ture. In particular, for a set of infinitely long straight steps
that are initially uniformly spaced and separate semi-infinite
facets, the step positions evolve symmetrically with respect
to the centerline �an assumed axis of symmetry� �see Fig.
1�a��. The scaling with time for the position of each facet
edge, measured from the centerline, switches from O�t1/4� to
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O�t1/5� when finite height effects become important. In the
more physically relevant case of concentric circular steps
surrounding a facet �see Fig. 1�b��, the analogous result is
that the scaling for the facet radius switches from r�t�
=O�t1/4� to O�t�. To our knowledge, these switches in the
time behavior have neither been reported nor studied before.
We show these results by first numerically solving the equa-
tions of motion for a finite set of discrete steps. Then, we
validate the numerical data and the scaling laws by setting up
and solving a nonlinear partial differential equation �PDE�
for each geometry. Interestingly, our numerical data for cir-
cular steps suggest that the ratio of the step-step interaction
energy to the step line tension can be estimated by measuring
the step collapse times.

When modeling the effect of the substrate, we assume that
the nanostructure and its substrate are made up of the same
material and that any lattice mismatch between the substrate
and the crystal is small enough to be considered as negli-
gible. Hence, the effects of mismatch-induced stress are ig-
nored, and the base step acts as a perfect sink for all diffus-
ing adatoms. As a result, the surface relaxation conserves
volume in the axisymmetric model. Therefore the finite
height effects studied in this paper are associated with geo-
metric constraints inherent in the relaxation. Finally, the
mass transport process on the structure’s surface is always
assumed to be terrace diffusion limited. The cases with
attachment-detachment and edge-diffusion-limited kinetics,
although important, complicate the analysis and lie beyond
the scope of this paper.

Of the two model systems studied in this paper �see Fig.
1�, the axisymmetric configuration of steps is more physi-
cally relevant because: �i� steps in experiments are usually

closed and �ii� the effect of step line tension is taken into
account. Although steps are never perfectly circular, there are
many experiments where relaxing nanostructures are well
approximated as being axisymmetric.5,7,19,20 Our results for
the straight-step system should be applicable to the special
situations where step line tension is unimportant. This sys-
tem can perhaps be thought of as a model for a set of steps
that evolves from a “step bunch” initial configuration. In this
case, the width of the terraces separating the bunches is large
compared to the interstep distance �inside the bunches�, so
that each bunch evolves in isolation at least initially.

The layout of the remainder of this paper is as follows.
Section II focuses on the discrete step equations �coupled
differential equations� in the straight step or one-dimensional
�1D� and axisymmetric cases. For each type of geometry, we
derive the governing equations of motion for a finite collec-
tion of steps and solve these equations numerically. In Sec.
III, we use continuum models to find scaling laws for facet
evolution in the 1D and axisymmetric settings. In particular,
for the axisymmetric case, we use Lagrangian coordinates to
develop a shock wave theory for facet evolution. We validate
the scaling laws and the shock wave theory using numerical
results from Sec. II. In Sec. IV, we conclude our paper with
a discussion of our results.

II. STEP EQUATIONS OF MOTION

Before deriving the step equations of motion, we motivate
the study of our two model systems, which are illustrated in
Fig. 1. Although geometrically simple, these models capture
the essential features in the time behavior of finite surface
structures. We expect that results for these relatively simple
models should carry over to more general geometries, at
least at a qualitative level. In Fig. 1�a�, the straight-step
model is also worth studying in its own right because, as we
will show, it has a simple analytic solution that is in exact
agreement with step simulation data.

The ideas developed in the straight-step model can be
used to understand the more physically relevant axisymmet-
ric case, illustrated in Fig. 1�b�. For this system, a facet de-
velops and evolves at the top of the nanostructure as the
innermost steps collapse.

We now state in more details the assumptions we make in
order to set up the discrete step equations of motion for the
two geometries in Fig. 1. These assumptions can be broadly
divided into two categories: those that relate to the “interior
steps,” i.e., non-extremal steps, and those that relate to the
interface between the nanostructure and the substrate or
facet.

First let us consider the assumptions we make for the
nanostructure itself. We assume that the surface relaxes in
the absence of deposition and desorption. Furthermore, the
adatom diffusion on terraces is the rate-limiting �slowest�
process, with the attachment-detachment of atoms at step
edges being relatively fast. We assume that no other facets
develop throughout the entire course of the surface evolu-
tion.

Next, we consider the assumptions involved when model-
ing the effect that the substrate has on the structure’s relax-

FIG. 1. The two model systems studied in this paper. �a� A finite
number of straight steps separating two semi-infinite �flat� facets,
possibly representing a straight-step bunch. Facet edges, w1�t� and
w2�t�, are measured from the centerline. �b� A finite number of
circular steps, representing an axisymmetric nanostructure. A mac-
roscopic facet, with radius r�t�, develops at the top of the structure
as innermost steps collapse.
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ation. The most important assumption is that we neglect the
effect of stress caused by the lattice mismatch between the
supported crystal and the substrate,21 considering this to be
sufficiently small. In the straight-step model �Fig. 1�a��, we
set the adatom flux to be zero on both facets. In the axisym-
metric case �see Fig. 1�b��, we set this flux to be zero on the
substrate; this condition is equivalent to conserving the nano-
structure’s volume.

For the 1D case, we let the dimensional positions of the
step edges be x̃i�t̃�, i=1,2 , . . . ,N where t̃ is dimensional
time. We define the terrace i to be the region xi�x�xi+1
between steps i and i+1; facets are the regions x̃N� x̃��
and −�� x̃� x̃1. Furthermore, the evolution of the surface
preserves the symmetry of the profile about x̃�N+1�/2 if N is
odd and about �x̃N/2+ x̃N/2+1� /2 if N is even: the facets are
always mirror images of each other.

For the axisymmetric case, we let r̃i�t̃� describe the �di-
mensional� radius of each circular step, with the substrate
being identified with the region r̃N� r̃��. In contrast to the
straight-step case, the faceted region is not 0� r̃� r̃1. In fact,
we will see in Sec. III B that, when the top step is about to
collapse, the faceted region can be described fairly well by
0� r̃� r̃2. �In particular, we refer the reader to Fig. 8�a� of
Sec. III B for an illustration of this point.�

Broadly speaking, the facet is a macroscopic object. Its
strict definition rests on the assumed behavior of the step
density �positive surface slope� at the facet edge within the
continuum theory, as discussed in Sec. III.

A. Straight steps

We now briefly derive the equations of motion for N in-
finitely long straight steps using a BCF-type model.15 Con-
sider a monotonic step train with N descending steps. By
mass conservation, the step velocity is

dx̃i

dt̃
=

�

a
�Ji−1�x̃i� − Ji�x̃i�� , �1�

where � is the atomic volume, a is the step height, x̃i�t̃� is
the step position as a function of time t̃, and Ji is the adatom
flux defined by Ji=−D

�ci

�x̃ , where D is the terrace diffusivity, x̃
is the Cartesian coordinate, and ci�x̃� is the adatom concen-
tration on terrace i. Under the quasi-steady approximation
��tci�0�, ci�x̃� obeys

�2ci = 0, �2�

which has a solution ci�x̃�=Aix̃+Bi. The constants Ai and Bi
are found by enforcing boundary conditions for the
attachment-detachment of adatoms at step edges

D� �ci

� x̃
�

x̃i

= k�ci�x̃i
− Ci

eq� , �3�

− D� �ci

� x̃
�

x̃i+1

= k�ci�x̃i+1
− Ci+1

eq � , �4�

where k is the attachment-detachment rate of adatoms at a
step edge and we have assumed the absence of an Ehrlich-

Schwoebel barrier.22,23 In Eq. �3�, Ci
eq is the equilibrium ada-

tom concentration at the step edge given approximately by

Ci
eq � cs�1 +

�i

kBT
	 . �5�

Here, �i is the step chemical potential at the ith step edge,
kBT is the Boltzmann energy, and cs is the equilibrium ada-
tom concentration at an isolated straight step. The step
chemical potential describes the propensity for a step edge to
accept adatoms. For entropic and/or elastic dipolar interac-
tions, �i is given by24

�i

kBT
= g
� L

x̃i+1 − x̃i
	3

− � L

x̃i − x̃i+1
	3� , �6�

where g is a dimensionless step-interaction coefficient and L
is the initial distance of separation between steps. Typically L
can range from 10 to 104 Å.16,25 We now introduce the di-
mensionless variables xi= x̃i /L and t= t̃ / �D /k2�. Furthermore,
we restrict ourselves to diffusion-limited kinetics so that for
all i, D /kL� �xi+1−xi�, the dimensionless step separation.
Note that the use of k in our time scale, D /k2, does not affect
any dimensional results we derive since the dimensional
equations of motion �and initial data� do not depend on k.
Then, Eq. �1� with Eqs. �2�–�6� becomes

dxi

dt
= ���

1

xi+2 − xi+1
	3

− 2� 1

xi+1 − xi
	3

+ � 1

xi − xi−1
	3

�xi+1 − xi�

−
� 1

xi+1 − xi
	3

− 2� 1

xi − xi−1
	3

+ � 1

xi−1 − xi−2
	3

�xi − xi−1� 
 ,

�7�

where

� =
cs�D2g

ak2L2 . �8�

Equation �7� is valid only when i=3,4 , . . . ,N−3, N−2.
Steps 1, 2, N−1, and N obey different equations. For ex-
ample, the motion of x1 and xN will be determined only by
the adatom fluxes on the first and �N−1�th terraces: under
the quasi-steady approximation, there can be no gradients in
the adatom concentration for x�x1 and x	xN. Hence, we set
J0=JN=0, consistent with previous work.9 The step at x2 is
coupled to the steps at x1 and x3 through steady-state diffu-
sion equations and their boundary conditions which involve
the step chemical potentials �1 and �3. However, �1 will
only couple together x1 and x2 in contrast to Eq. �6�. Simi-
larly, step N only experiences “one-sided” interactions with
step N−1 and the equation for the velocity dxN−1 /dt must be
modified accordingly. Therefore, to supplement Eq. �7�, we
have the relations
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dx1

dt
= ���

1

x3 − x2
	3

− 2� 1

x2 − x1
	3

�x2 − x1� 
 , �9�

dx2

dt
= ���

1

x4 − x3
	3

− 2� 1

x3 − x2
	3

+ � 1

x2 − x1
	3

�x3 − x2�

−
� 1

x3 − x2
	3

− 2� 1

x2 − x1
	3

�x2 − x1� 
 , �10�

dxN−1

dt
= ��− 2� 1

xN − xN−1
	3

+ � 1

xN−1 − xN−2
	3

�xN − xN−1�

−
� 1

xN − xN−1
	3

− 2� 1

xN−1 − xN−2
	3

+ � 1

xN−2 − xN−3
	3

�xN−1 − xN−2� 
 ,

�11�

dxN

dt
= ��−

− 2� 1

xN − xN−1
	3

+ � 1

xN−1 − xN−2
	3

�xN − xN−1� 
 . �12�

Equations �7� and �9�–�12�, with suitable initial data, com-
pletely specify the motion of N straight steps moving under
the effect of entropic and/or elastic dipolar repulsions. Inte-
grating these equations �with unit initial step separation�
yields the curves in Fig. 2, where several snapshots are
shown of the step density Fi�

1
xi+1−xi

as a function of the step
position xi. Note that at early times there is a maximum in
the step density near each of the extremal steps, while far
from these steps the density is still approximately constant.

Finally, note that the form of Eqs. �9�–�12� is particular to
the physical situation being considered. In our case, the ex-
tremal steps are free to move outward indefinitely without
restriction. This is not true in Ref. 17, for example: there, the
equations of motion for steps 1, 2, N−1, and N are different
due to step-antistep annihilations occurring at the peaks and
valleys of 1D periodic corrugations.

B. Circular steps

The derivation of the equations of motion for the axisym-
metric case is similar to Sec. II A, but is slightly modified to
take into account the effect of step line tension. We use Eq.
�1� but with radial positions r̃i and r̃ replacing x̃i and x̃. The
adatom fluxes Ji are induced by differences in the step edge

chemical potentials �i. In the axisymmetric case with
diffusion-limited kinetics the Ji take the form18

Ji�r̃, t̃� = −
Dcs

kBT

1

r̃

�i+1 − �i

ln�r̃i+1/r̃i�
. �13�

The two main differences between the straight and circular-
step cases arise through the step interactions and step line
tension. Both of these effects are encapsulated in the axisym-
metric step chemical potential �i. Instead of Eq. �6�, we now
have18

�i =
�g1

r̃i

+
�

2
ar̃i

��V�r̃i, r̃i+1� + V�r̃i−1, r̃i��
� r̃i

. �14�

In Eq. �14�, g1 is the step line tension �a constant� and
V�r̃i , r̃i+1� is the interaction potential between steps i and i
+1. The first term, �g1 / r̃i, accounts for the curvature effect
of each step. Assuming entropic and/or elastic dipolar repul-
sions, V takes the form6

V�r̃i, r̃i+1� =
4
a3g3

3

r̃ir̃i+1

�r̃i + r̃i+1��r̃i+1 − r̃i+1�2 , �15�

where g3 is the step-interaction coefficient. From Eqs. �14�
and �15�, we define a dimensionless parameter g�g3 /g1 to
quantify the strength of the step-step interactions relative to
the step line tension. Analogous to the straight-step case, we
set the adatom fluxes to be zero when r̃� r̃1 and r̃	 r̃N so
that J0=JN=0. Equations �1� and �13�–�15� with suitable ini-
tial data for the step positions now completely specify the
motion of all N steps in the nanostructure. In dimensionless
variables, the governing equations are
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FIG. 2. Simulation data for the �discrete� straight-step density Fi

as a function of the �scaled� step position xi. The profiles were
obtained by solving Eqs. �7� and �9�–�12� numerically with the
number of steps N=31 and the dimensionless constant �defined in
Eq. �8�� �=1.
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dr1

dt
= −

�

r1�
1

r1
−

1

r2
+ g�
�0,r1,r2� − 
�r1,r2,r3��

ln�r2/r1� � , �16�

dr2

dt
= −

�

r2�
1

r2
−

1

r3
+ g�
�r1,r2,r3� − 
�r2,r3,r4��

ln�r3/r2�
−

1

r1
−

1

r2
+ g�
�0,r1,r2� − 
�r1,r2,r3��

ln�r2/r1� � , �17�

dri

dt
= −

�

ri�
1

ri
−

1

ri+1
+ g�
�ri−1,ri,ri+1� − 
�ri,ri+1,ri+2��

ln�ri+1/ri�
−

1

ri−1
−

1

ri
+ g�
�ri−2,ri−1,ri� − 
�ri−1,ri,ri+1��

ln�ri/ri−1� �,

i = 3,4, . . . ,N − 2, �18�

drN−1

dt
= −

�

rN−1�
1

rN−1
−

1

rN
+ g�
�rN−2,rN−1,rN� − 
�rN−1,rN,���

ln�rN/rN−1�
−

1

rN−2
−

1

rN−1
+ g�
�rN−3,rN−2,rN−1� − 
�rN−2,rN−1,rN��

ln�rN−1/rN−2� � ,

�19�

drN

dt
= +

�

rN�
1

rN−1
−

1

rN
+ g�
�rN−2,rN−1,rN� − 
�rN−1,rN,���

ln�rN/rN−1� � , �20�

where


�ri−1,ri,ri+1� =
2ri+1

ri+1 + ri

1

�ri+1 − ri�3 −
2ri−1

ri + ri−1

1

�ri − ri−1�3 +
1

ri

� ri+1

ri+1 + ri
	2 1

�ri+1 − ri�2� + 
� ri−1

ri + ri−1
	2 1

�ri − ri−1�2� . �21�

Here r� r̃ / l and t� t̃
�D/k2� , where l is a length scale defined in

the next paragraph and g�l�= 2
3 �a / l�2�g3 /g1�. Again, the use

of k in the chosen time scale D /k2 does not affect any di-
mensional results we derive. The prefactor ��l�
= �

D2�2csg1

ak2kBT
�l−3 is a dimensionless parameter that determines

the time scale of evolution. One can always choose time
units so that �=1 as we do in our numerical calculations.

The length scale l could take one of two “natural” values.
One choice is to take l=L, the initial step separation distance
�initial terrace width�, analogous to the straight-step case.
This is done to simulate experiments, in which case the step
positions are initialized to be rn=n, n=1,2 , . . . ,N. In our
simulations, we always take ��L�=1. Another possibility is
to take l=Rc, the initial radius of the base step. This second
choice is made in Sec. III B on Lagrangian theory. For future
reference, we note that ��L� /N3=��Rc� and g�L� /N2=g�Rc�.

Equations �16�–�21� for concentric circular steps have an
important difference from Eqs. �7� and �9�–�12� for straight

steps. Because of the step line tension, the radius of the top
step shrinks and undergoes a monotonic collapse, resulting in
a successive “peeling” of the top layer.5,7 The removal of the
top layer reveals an underlying one that has a larger radius.5

Therefore, the facet evolution consists of a radial expansion
along with a downward translation. This evolution has been
studied in the case of infinite axisymmetric structures: in
particular, for an equally spaced initial step configuration, we
have8,18,26 r�t�=O�t1/4� and h0−h�t�=O�t1/4� for t�1, where
r�t� is the facet radius, h�t� is the �dimensionless� vertical
location of the facet relative to some reference height h0, and
t is �dimensionless� time.

Another interesting quantity to study is the collapse time
of the top step. These collapse times arise naturally in the
solution of Eqs. �16�–�20� and can be found from
experiments.5,7,20 When we integrate Eqs. �16�–�20� numeri-
cally and a collapse occurs, our convention is to remove the
variable corresponding to the innermost index, rj, for in-
stance, and continue the integration with rj+1�t� as the inner-
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most step. For example, after the first collapse, r1 is removed
from the system and r2 obeys Eq. �16� but with r1→r2, r2
→r3, and r3→r4. Likewise, r3 obeys Eq. �17� but with r1
→r2, r2→r3, r3→r4, and r4→r5. Hence, throughout the en-
tire course of the integration, a particular step index always
follows the same step. The behavior of these collapse times
is crucial in determining the evolution �expansion� of the
facet. Qualitatively, if the steps collapse frequently, the facet
evolution will proceed rather quickly. On the other hand, if
steps do not collapse at all, the facet will remain frozen in
time. Simple scaling results have been obtained for geometri-
cally simple structures with a practically infinite number of
steps.8 For collapse times tn, and n�1, we have tn=O�n4�
when the spacing of steps is initially uniform �corresponding
to cone shaped structures�. Other initial step spacings result
in different exponents.27

The scaling laws for the facet discussed above are inti-
mately connected to the self-similarity inherent in the evolu-
tion of infinite nanostructures.8,26,27 When the kinetics is dif-
fusion limited and the number of steps approaches infinity,
future height profiles of the nanostructure look like stretched
versions of past ones. This self-similarity is stable in the
sense that small perturbations to an initial configuration of
equally spaced circular steps eventually decay.27

In the axisymmetric case, this self-similarity property is
destroyed with the onset of finite height effects. The reason
for this is that the base step acts as the ultimate mass sink for
the adatom flux. As a result, the radii of the last few steps
grow with time as mass is expelled from the top of the struc-
ture and accumulates at the bottom. In this case, instead of
self-similarity in the height profile, we show below that scal-
ing laws in the collapse times tn can be determined.

In general, the collapse times depend not only on the ini-
tial values of the step radii, but on g as well. Thus, for a
structure initially consisting of N concentric and equally
spaced circular steps, let tn�N ,g�, for n=1,2 ,3 , . . ., be the
collapse times. Furthermore, define the collapse time dis-
crepancies with those of an infinite structure by

En�N,g� = tn�N,g� − tn��,g� . �22�

Figure 3�a� shows En�N ,0.01� plotted as a function of n for
N=40, 50, and 60. Figure 3�b� shows that the step simulation
data collapse onto a single universal curve given by

G� n

N
,g	 =

En�N,g�
N4 . �23�

We note the following points about Eq. �23�. First, G is non-
monotonic. In particular, the inset of Fig. 3�b� shows the
presence of a local maximum for n /N�0.45 before the mini-
mum at n /N�0.76. Although not visible in the plots, the
alternating pattern of minima and maxima continues for
smaller values of n /N, with the amplitudes decreasing
quickly as n /N→0. Compared to an infinite structure, the
step collapse times for a finite structure occur earlier, then
later, then earlier, etc. in an alternating fashion. For the data
in Fig. 3�b�, we found that the positions of the first four
extrema �counting from the right� were at n /N�0.76, 0.45,
0.33, and 0.25. We do not know if extrema exist for smaller

values of n /N. If they do, their amplitudes are too small for
us to reliably detect these extrema. From the first four ex-
trema, it appears that the spacing between them gets smaller
as n /N gets smaller, with the amplitudes decreasing by about
an order of magnitude from one extremum to the next. Sec-
ond, relation �23� seems to hold for 0.25�n /N�1; for
n /N�0.25, the collapse of data onto a single curve is less
clear because of numerical errors. These errors are on the
order of �or greater than� �G�, making it difficult to draw firm
conclusions about the behavior of En�N ,g�. Third, from Fig.
3�b�, G�·� appears to be a smooth continuous curve, at least
when 0.25�n /N�1. �For smaller values of n /N the evi-
dence is again inconclusive for the same reason discussed
above.�

It seems reasonable to expect that a dependence such as
Eq. �23� should be derivable from a continuous model in the
large N limit. In fact, we show that this is so in the zero-g
limit in Sec. III B. Remarkably, even when N is as small as
40, most of the collapse times seem to obey an underlying
continuum equation. Finally, since it is known that tn�� ,g�
� t�n4 when n�1,8,26 for large n �and N� we have
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FIG. 3. �a� Circular-step �radial case� simulation data for the
scaled deviations En defined in Eq. �22� with the step-interaction
parameter g=0.01. Step collapse times for an infinite structure,
tn�� ,g�, were approximated with tn�N=700,g�. �b� The similarity
collapse data from �a� by Eq. �23�. Inset shows a local maximum of
En /N4 for n /N�0.45.
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tn�N ,g� /N4� G̃�n /N ,g�, where G̃�x ,g��G�x ,g�+ t��g�x4

and t� has been documented for a wide range of g values in
Ref. 26.

With Eq. �23� established, it is natural to wonder if there
is also a simple scaling of En with the step-step interaction
parameter g. Figure 4 shows that the absolute minimum of
En /N4 scales as O�g1/2� for small g, so that this minimum
tends to zero as g→0. Again, this scaling was determined
empirically: an analytic derivation is the subject of work in
progress. For each value of g, the location of the deepest
minimum in Fig. 3�b� occurred at n /N�0.76, which is seem-
ingly independent of g.

III. CONTINUUM APPROACH

Our goal in this section is to derive fully continuum equa-
tions that govern the relaxation of finite nanostructures for
straight-step and axisymmetric geometries. These equations,
in general, have nonzero solutions between two free bound-
aries, the positions of which correspond to the edges of fac-
ets. By solving the continuum equations, we obtain the nano-
structure’s slope profile and scaling laws for the facet
evolution. We confirm these predictions by comparing them
with results from the numerically integrated discrete step
equations of Sec. II.

A. One-dimensional case

We now derive continuum equations for surface evolution
following Refs. 28 and 29. First, we have the mass conser-
vation law

� h̃

� t̃
+ � � · j = 0, �24�

where h̃ is the height profile of the structure, � is the atomic
volume, and j is the large-scale adatom flux. In the case of

diffusion-limited kinetics, the flux j and the continuum sur-
face chemical potential � are related by18

j = −
csD

kBT
� � . �25�

The next step is to derive an expression for � in terms of the

slope ��h̃�, thus closing Eqs. �24� and �25�. The resulting
PDE can be solved provided that suitable boundary condi-
tions are enforced at facet edges. The locations of these
edges are unknown a priori.18,26,30 However, implementing
these boundary conditions is not always
straightforward.8,26,31,32

To derive �, we coarse grain the step chemical potential
�i following the procedure used in Ref. 18. From Eq. �6� we
have

�i

kBT
= g�Fi

3 − Fi−1
3 � , �26�

with Fi=
1

xi+1−xi
and xi= x̃i /L, where L is the initial terrace

width. This definition of xi is convenient since it will enable
direct comparisons of PDE predictions with step simulation
databased on Eqs. �7� and �9�–�12� where the same �dimen-
sionless� xi is used. The quantity Fi and the physical discrete
step density f i are related through Fi=

L
a f i, where f i=

a
x̃i+1−x̃i

. If
we define �x̃i= x̃i− x̃i−1= a

fi−1
and �xi=xi−xi−1=1 /Fi−1, then

we can write

Fi
3 − Fi−1

3 =
1

Fi−1

Fi
3 − Fi−1

3

�xi
�

1

F

�F3

�x
. �27�

Since �xi=O�1�, the finite difference term in Eq. �27� can
only be well approximated by the derivative when the step
density is a sufficiently slowly varying function of the step
number i. This is the fundamental assumption of the con-
tinuum approach. Then, from Eq. �26�, we obtain the con-
tinuous step chemical potential28,29

�

kBT
=

3g

2

�F2

�x
. �28�

Using Eqs. �24� and �25�, we have

� f

� t̃
+ ��csD

kBT
	 �3�

� x̃3 = 0, �29�

where f =− �h̃
�x̃ . Upon using Eq. �28�, we have17,29,33

�F

�t
+

3�

2

�4F2

�x4 = 0, �30�

where x= x̃ /L, t= t̃ / �D /k2�, and � is given by Eq. �8�. Equa-
tions such as Eq. �30� have often been solved using periodic
boundary conditions31,33,34 so that “edge effects” are not
studied. These models have been used to successfully ex-
plain many experiments involving periodic profiles.35,36 Our
focus in this paper is different: we would like to see how the
presence of extremal steps, which only experience one-sided
interactions, affects the macroscopic evolution of the vicinal
surface. To this effect, we consider two model subsystems: a
semi-infinite step train �the straight-step analog of the system
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FIG. 4. Absolute minimum �in n� of scaled deviations En /N4

from Fig. 3�b�. This minimum follows the scaling law
�minn�En /N4��=O�g1/2� for sufficiently small step-step interaction
parameter g.
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studied in Ref. 8� and a �strictly� finite step train. Our aim is
to find scaling laws that govern each subsystem’s global be-
havior.

We assume that the facet edges are located at the �dimen-
sionless� positions w1�t� and w2�t� �see Fig. 1�a�� and con-
sider step motion under entropic and/or elastic dipolar repul-
sions. The governing PDE is

�F

�t
= − �

�4F2

�x4 , w1�t� � x � w2�t� , �31�

where �= 3�
2 and F�− �h

�x 	0 with h= h̃ /a. The initial condi-
tion for Eq. �31� is

F�x,0� = F0�x� 	 0, w1�0� � x � w2�0� , �32�

where w1�0� and w2�0� are the initial positions of the facet
edges. Note that, in the numerical experiments, we took
F0�x��1. Here, however, we set up the problem for the case
of general initial conditions. Thus, the continuum formula-
tion involves two free boundaries �the positions of which are
w1�t� and w2�t�� with a fourth-order PDE. Hence, six bound-
ary conditions are needed, three on each facet edge, to deter-
mine the solution. We specify these conditions below.

Let us begin with the boundary conditions for the situa-
tion with a semi-infinite number of steps. In this case we take
w2�t�= +� for all t and assume that F0�x�→1 rapidly as x
→�. With only w1�t� unknown, Eq. �31� becomes a free
boundary problem with a single free boundary18,26,30 so only
five boundary conditions are needed. Let h1 be the �constant�
height of the facet to the left of w1; hence, h�x , t�=h1 for x
�w1. Then the first boundary condition follows from enforc-
ing continuity of slope17,18 across the facet edge. Note that a
discontinuous slope, shown in Fig. 1, only exists at t=0 as a
result of the initial condition. In general, for t	0, we expect
the slope to be continuous, consistent with studies of equi-
librium crystal shapes near facets.11,24 Hence, we have

F�w1� = 0, �33�

which is equivalent to the step density being zero at the facet
edge �see Appendix A for more details on the behavior of F
near the facet edge�. We also require F to be positive to the
right of w1.

The second condition states that there is no adatom flux
on the �infinitely large� facet. This fact is consistent with the
adatom density being constant on the facet, satisfying the
steady-state diffusion equation. Hence, j=0 and using Eqs.
�25� and �28�, we have

� �2F2

�x2 �
x=w1

= 0. �34�

The third condition comes from the continuity of the sur-
face height and accounts for the fact that the facet height �for
x�w1�t�� does not change over time. Hence, by Eq. �33� we
have 0= �d /dt�h�w1�t� , t�=�th �x=w1

=−�� · j �x=w1
=0. Thus,

we find

� �3F2

�x3 �
x=w1

= 0. �35�

Note that while F2 and its derivatives �up to third order� are
continuous across the facet, the derivative �F /�x itself blows
up as x→w1 �see Appendix A for more details�. Finally, we
impose the two far-field conditions:18

F → 1 as x → � , �36�

�F

�x
→ 0 as x → � , �37�

which result from the assumption that F0�x�→1 rapidly as
x→�.

In the particular case where F0�x��1 and w1�0�=0, Eqs.
�31�–�37� admit self-similar solutions of the form

F�x,t� = f�x/��t�1/4� , �38�

with w1=w0t1/4 for some constant w0�0. This self-similarity
is confirmed by results from step simulations in Fig. 5. The
O�t1/4� scaling is a well established result for semi-infinite
nanostructures.8,26 For the collapsed data shown in the inset,
the step density becomes zero at a �small� negative value of
the step position. Therefore, as expected, we have w1�t�
�w0t1/4, where the constant w0�0, consistent with a left-
ward facet motion.

We now turn our attention to the case of a finite structure
with N steps and two facets, whose edges are located at x
=w1�t� and x=w2�t�	w1�t� �see Fig. 1�a��. The six boundary
conditions are

�3F2

�x3 =
�2F2

�x2 = F = 0,

at x = w1�t� and x = w2�t� . �39�

Note that Eq. �31� is a conservation law for F, with the flux
being proportional to �3F2

�x3 . From Eq. �39� this flux vanishes at
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FIG. 5. Simulation data for the straight-step density obtained by
integrating Eqs. �7� and �9�–�12� using a semi-infinite number of
steps and the dimensionless constant �=1 �defined in Eq. �8��. In-
set: data collapse consistent with Eq. �38�.
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the facet edges; hence if h1 and h2 are the �constant� facet
heights, then

�
w1

w2

F�x,t�dx = h1 − h2 = N �40�

is constant as expected.
We now restrict ourselves to structures with mirror sym-

metry, where the solution F=F�x , t� of Eq. �31� is an even
function of x and w2�t�=−w1�t�	0 for all times t�0. We
begin by considering similarity solutions of the form

F�x,t� = �N4

�t
	1/5

p���, � =
x

�N�t�1/5 , �41�

where �−�
� p���d�=1 to satisfy Eq. �40�. The substitution of

ansatz �41� into Eq. �31� yields

1

5
��p�� = �p2��. �42�

We solve this equation assuming that p��� is even in �. It is
therefore sufficient to consider �nonzero� solutions on the
interval �−�0 ,0�, where �0=

w1�t�
�N�t�1/5 ; for ��−�0, p��� is iden-

tically zero. The boundary conditions for p are p�−�0�=0,
�p2���−�0�=0, p�0�=�, p��0�=0, and �p���0�=0. Here, the
constant � has been artificially introduced and is chosen to
satisfy the integral constraint on p. Note that this constraint
can be used in place of the condition �3F2 /�x3=0 in Eq. �39�.
The integral constraint ensures that �w1

w2Fdx is constant in
time which is exactly equivalent to setting �3F2 /�x3=0 at the
facet edges. Equation �42� was solved numerically and the
solution is shown in Fig. 6. This numerical procedure �using
�� gives �3F2 /�x3=0 at the facet edges to within the accu-
racy of the numerical method. More details on the numerical
solution of Eq. �42� are given in Appendix B.

Consider now the simple example of the initial value
problem in Eqs. �31� and �32�, with the boundary conditions
�39�, where F0�x��1 and w2�0�=−w1�0�	0. This, of
course, yields a structure with mirror symmetry, with even F
and w1�t�=−w2�t� for t�0. For early enough times, we ex-
pect the two facets’ interaction to be negligible �see Fig. 2�.
Hence, for these early times the solution can be well approxi-
mated by similarity solution �38� sufficiently near each of the
two facets �cf. Figs. 2 and 5�, yielding a O�t1/4� scaling for
the facet edge position. This approximation holds for times
small enough to ensure that the two maxima shown in Fig. 2
do not interact. On the other hand, the results of our numeri-
cal computations show that the solution in Eq. �41�, corre-
sponding to a O�t1/5� time behavior of the facet edge posi-
tion, applies for t large �see Fig. 6�. Note that this second
solution does not provide a good approximation for small t:
Fig. 6�b� shows the computed p��� by Eq. �41�. From this
plot, it is clear that the similarity solution does not obey the
initial condition F0�1.

How the transition of the facet edge position scaling from
O�t1/4� to O�t1/5� occurs is not clear to us at present. This
transition signifies the finite height effect. Once this effect
occurs, it is easy to detect it since there are clear qualitative
differences in the nanostructure’s macroscopic evolution.

First, the maximum step density starts to decrease in time as
O�t−1/5�. Second, the facet edge position switches from a
O�t1/4� scaling to O�t1/5�. In Fig. 2, the transition occurs
roughly at t0�50. Redimensionalizing t0, we have a transi-
tion time of

t̃0 = t0
aL2

�csDg
=

3t0

2
�L

a
	2 aL3kBT

�2Dcsg3
, �43�

where D, cs, and g3 depend on temperature and we have used

g=
2�a2g3

3kBTL3 by Eq. �C6� of Appendix C.
We now discuss an application of our results to a material

system. In general, it is rather difficult to obtain a full set of
material parameters to evaluate our predicted transition time.
However, data for the 1�1 reconstruction for Si�111� are
available and are summarized in Appendix C. Experiments
on Si�111� are often done at the temperature T�900 °C so
that the motion of steps is fast—on the order of minutes.37

However, at this temperature, the kinetics of Si�111� steps is
attachment-detachment limited. For our theory to be appli-
cable, we require terrace diffusion-limited kinetics, and this
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FIG. 6. �a� Simulation data for straight-step densities obtained
by solving Eqs. �7� and �9�–�12� with the dimensionless constant
�=1 �see Eq. �8�� and the number of steps N=61. �b� Collapse of
the step simulation data �symbols� and numerical solution �solid
curve� of Eq. �42� with Eq. �41�. The data collapse verifies the
similarity solution of Eq. �41�, predicting a O�t−1/5� scaling for the
entire profile and a O�t1/5� scaling for the facet edge position �cf.
Fig. 5�.
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can be achieved for Si�111� by reducing the temperature T.
When T=650 K and L=100 Å, D / �kL��0.14 and we have
a transition time of t̃0�8 days. Although this length of time
is longer than the duration of most experiments, we think
that it can be greatly reduced for a material that obeys
diffusion-limited kinetics at higher temperatures; for ex-
ample, SrTiO3�001�.20

B. Axisymmetric case

In Sec. III A, we derived a �Eulerian� PDE for the evolu-
tion of the step density �or positive surface slope� F�x , t�,
where x is the spatial coordinate and t is time. An equivalent
approach to modeling nanostructure evolution is to use La-
grangian coordinates to describe the step position at a given
step index and time.38 �We will describe the main advantage
of using Lagrangian coordinates in the next paragraph.�

Consider Eqs. �16�–�20� with the characteristic length
scale chosen to be l=Rc, the initial radius of the base step.
When using Lagrangian coordinates, we replace rn�t�, the
radius of the nth step, by ��s , t�, where ��s , t� is a reasonably
smooth function, s=n�, and ��1. For structures with N
steps initially, a natural choice is to set �=L /Rc=1 /N, treat-
ing N as moderately large �say 30–100� but finite. Quantities
such as rn�1�t� are replaced by ��s�� , t�=��s , t��� ·�s
+O��2� and likewise with rn�2�t�. Using g�Rc�=�2g�L� and
��Rc�=�3 �recall that ��L�=1 is taken in the simulations�,
we obtain the Lagrangian PDE �Ref. 38�

�� = −
1

�
�1

�
+

3g

�s

1

2

1

��s
+ ���ss

�s
4 	

s
��

s

, �44�

where �=�4t and g�g�L�. The Eulerian equivalent of Eq.
�44� is also a fourth-order nonlinear PDE for the surface
height and is given in Ref. 18. However, in the problem that
we are concerned with, there is a good reason for using a
Lagrangian formulation. The radii of the inner and outermost
steps in the nanostructure are always changing. Hence, a for-
mulation in Eulerian coordinates would involve two free
boundaries whose positions are unknown a priori. In La-
grangian coordinates, the index of the base step is always
fixed to be N and therefore s is fixed to be 1. In contrast, the
index of the first step increases monotonically as collapses
occur. Therefore, the Lagrangian formulation only involves
one free boundary and is simpler to work with.

Our aim here is to analytically derive the function G�·�
that was constructed previously through numerical simula-
tions in Fig. 3 �see Eq. �23��. The main assumption will be
that g, the step-interaction parameter, is small enough that
we can neglect the step-interaction terms in Eq. �44�. This
assumption, which is somewhat analogous to considering the
inviscid limit in fluid dynamics, considerably simplifies the
governing Eq. �44� and allows us to obtain explicit analytic
expressions for the facet radius and step collapse times. Set-
ting g=0 in Eq. �44� yields

�� −
1

�3�s = 0. �45�

Note that by removing step interactions completely, we have
changed a fully nonlinear PDE with high-order derivatives

into a much simpler hyperbolic kinematic wave equation,
amenable to analysis by the method of characteristics.39

One of the basic properties of hyperbolic equations is that
they admit shock waves as possible solutions: there can be
abrupt jumps in the solution that are mathematically repre-
sented by discontinuities. The discontinuous solution can be
understood as approximating a smooth physical solution that
is rapidly varying. For example, to describe fluids with low
viscosity, the viscous terms in the �parabolic� Navier-Stokes
equations are often dropped, giving rise to the �hyperbolic�
Euler equations.

The advantage of studying a hyperbolic equation is that
propagating waves and shock waves can be analyzed and
understood using the method of characteristics. This method
is central to the theory of hyperbolic systems39 and has been
successfully applied to a diverse range of problems such as
exclusion processes40 in statistical mechanics and traffic
flow.41 In Fig. 7�a�, the facet is represented as a sharp dis-
continuity in the step radius variable �=��s ,��. As the sur-
face relaxation proceeds, the height of the structure decreases
and is accompanied by an expansion of the facet radius. This

(a)

(b)

τ

FIG. 7. �a� For an axisymmetric nanostructure, the evolving
facet is represented by a propagating shock wave whose position in
the s �Lagrangian� coordinate is described by either s1���, s2���, or
s3���, depending on whether finite height effects are significant.
When s�s1,2,3���, the step radius is �=0. �b� Characteristics �thin
lines� in �s ,�� space. The position of the facet edge in Lagrangian
coordinates is given by s1���, s2���, and s3��� �thick lines�. Note the
presence of a rarefaction fan originating at �s ,��= �1,0�, represent-
ing the effect of the motion of the base step. Characteristics also
emanate from s=1 where the boundary conditions are unknown.
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evolution corresponds to a rightward propagation of the
shock wave and its motion is the focus of the following
paragraphs.

The solution ��s ,�� of Eq. �45� satisfies

d�

d�
= 0 along

ds

d�
= −

1

�3 . �46�

The lines along which d� /d�=0 here are the characteristics
of Eq. �45�. Figure 7�b� shows the characteristic diagram
corresponding to Eq. �46�; note that in the presence of the
substrate the variable � can take a range of values at �s
=1, �=0�. This situation can be described by a set of char-
acteristics emanating from �1,0� as shown in Fig. 7�b�. This
set is called a “rarefaction fan,” which is a concept common
in the theory of PDEs �see, e.g., Refs. 39 and 41�. Informa-
tion from this rarefaction fan eventually affects the facet mo-
tion causing a switch in the behavior of s��� from s1��� to
s2���. There is also a second switch from s2 to s3 due to
characteristics that originate from s=1, the base step. How-
ever, we currently do not know what the boundary conditions
at s=1 are, even by attempts to obtain such conditions from
Eqs. �19� and �20�. Therefore, we focus our attention only on
the switch from s1 to s2, where s2��� extends over an angle �,
0���
 /4 �see Fig. 7�b��.

Note that for an infinite structure, the base step is infi-
nitely far away and characteristics from the rarefaction fan
take an infinite amount of time to reach the facet. This is
consistent with �=�4t and taking �→0: the switch from s1 to
s2 never occurs because the scaled time in the characteristics
diagram progresses infinitely slowly.

With knowledge of the functions s1 and s2, we can use
�=�4t= t /N4 to show that the collapse times in the step simu-
lations are given by

tn = N4�1�n/N� if � � �0 �47�

=N4�2�n/N� if �0 � � � �̃0, �48�

where �1,2 are the inverses of s1,2 so that �=�1,2�s�⇔s
=s1,2��� and s=n�=n /N. Equations �47� and �48� confirm
the scaling behavior observed in Fig. 3�b�.

We proceed to determine the collapse times tn. It should
be clear that the volume should be conserved by the evolu-
tion. In the g=0 continuum limit that we consider here, this
translates into the equation ��2��+ �2 /��x=0, which the solu-
tions to Eq. �45� satisfy. We can then use this equation to
write a “Rankine-Hugoniot” condition39,41 for the shock
speed, which expresses the conservation of volume across
the jump. This condition relates the facet vertical velocity,
ṡ j���, to the radius of the facet, ��sj ,��, where j=1,2. The
radius of the facet can be obtained by tracing the character-
istics that intersect s1 and s2 in Fig. 7�b� back to the s axis
and the point �1,0�, where the initial profile ��s ,0� is known.
Hence, in principle we can find sj���, which in turn yields the
collapse times through Eqs. �47� and �48�. The quantities s0
and �0 can be found from the intersection of the curves s1���
and s+�=1. More details of the derivation can be found in
Appendix D; here, we simply state our final results.

The facet radius in the presence of finite height effects is

��s1���,�� = �3�1/4, � � 1/9,

��s2���,�� = B−1/3�, 1/9 � � � �̃0, �49�

where B=1 /36. Unfortunately, our theory does not give a
value for �̃0 because we do not know what the boundary
conditions are at s=1 in Fig. 7�b�. Therefore, s̃0 is also un-
known.

Our prediction for the step simulation collapse times is

tn�N;0� = �t�n4, n/N � 8/9

N4
�B

�1 − n/N
, 8/9 � n/N � s̃0, � �50�

where t�= ��3 /2�12. The scaled deviations En, defined by Eq.
�22�, are

En�N;0�
N4 = �0, n/N � 8/9

�B
�1 − n/N

− t�� n

N
	4

, 8/9 � n/N � s̃0. �
�51�

To compare our predictions to the step simulation data,
we approximate the facet radius in our simulations by the
radius of the next �innermost� step when the top step col-
lapses. Figure 8 shows a comparison of our predictions with
the simulation data, assuming that � in Fig. 7�b� is suffi-
ciently close to 
 /4 so that the s2→s3 transition does not
manifest itself. �In hindsight, this seems to be a reasonable
assumption as we have never observed this second switch in
our step simulations.� In Fig. 8�a� there is a switch in the
behavior of the facet radius from O�t1/4� to O�t�. In this plot,
the facet radius was approximated by measuring the radius of
the innermost step rn+1�tn� at the collapse time tn. Note that
the prediction of Eq. �49� seems to consistently underpredict
the radius of the facet. Figure 8�b� illustrates that the tn
= t�n4 relation holds accurately for many of the early step
collapses. When ln n�4.7, there is a switch in the behavior
corresponding to characteristics from the rarefaction fan
reaching the position of the facet edge s2 in Fig. 7�b�. In Fig.
8�c�, we show the scaled collapse time deviations En as a
function of n /N for different values of g. As g→0, the simu-
lation results converge to the zero-g solution given by Eq.
�51�. Note that the rapidly decaying oscillations in En are not
captured by the zero-g solution.

Our results seem to validate the shock wave theory for
facet evolution provided that g is sufficiently small—but is g
generally small in physical situations? In Eqs. �16�–�20�, the
parameter g= 2

3 �a /L�2�g3 /g1� depends on the initial slope of
the structure which in turn depends on its method of fabri-
cation. For example in Ref. 20, a /L�0.1 whereas in Ref. 42,
a /L�10−4. Values of g1 and g3 have been tabulated �see, for
example, Ref. 24�. For Ag�110� at 300 K, we have g1a
=0.15 eV /Å2 and g3=0.009 eV /Å2. Taking the step height
to be a=3 Å, we obtain a range of values for g�3.7
�10−2–3.7�10−8 corresponding to a /L�10−1–10−4. In
general, we expect our zero-g theory to be more accurate
when the initial slope of the structure is smaller.
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Finally, let us try to compute for a specific material sys-
tem the transition time, at which the facet radius switches
from an O�t1/4� to an O�t� behavior. Redimensionalizing �0
=1 /9 gives

t̃0 =
N4

9
� aL3kBT

�2Dcsg1
	 , �52�

cf. Eq. �43�. We will now calculate this transition time as
before using the material parameters for Si�111� in Appendix
C. With an initial step separation of L=100 Å, we have g
��2 /3��a /L�2�g3 /g1��4.7�10−4. Hence our zero-g theory
should be applicable. With N=30, T=650 K, and the mate-
rial parameters in Appendix C, we calculate t0�6 days. As
in the straight-step analysis, we expect this transition time to
reduce for certain materials such as SrTiO3�111�, where the
rate-limiting transport process is terrace diffusion even at
temperatures as high as 1000 K.20 Note that in Eq. �52�, the
transition time rapidly increases as N increases.

C. Comparison of boundary conditions

We close this section with some comments about bound-
ary conditions in the axisymmetric and straight-step cases.
Consider the boundary condition for the adatom flux in the
axisymmetric system �Eq. 47 of Ref. 18� and the equivalent
condition for straight steps �Eq. �34��. Both conditions
specify the adatom flux at the edge of a macroscopically flat
facet. In the straight-step case, this flux is zero whereas in the
axisymmetric case, the adatom flux has to be nonzero to
ensure that the structure’s height decreases with time �viz.
Eq. �24� applied at the facet edge�. The physical reason for
this difference is the line tension in circular steps. Provided
this line tension is sufficiently large compared to the step-
step interactions �quantified by having g�1�, the extremal
steps of the axisymmetric and straight-step systems exhibit
very different behaviors.

In our previous discussion for the axisymmetric crystal,
we drew attention to the innermost �top� step which shrinks
more rapidly than the other steps.5 More specifically, the top
step collapses, emitting adatoms which are then absorbed by
a growing second step and adjacent steps. This process gives
rise to a terrace that, during most of its evolution, is much
larger than the typical distance between interior steps. As
previous authors pointed out, the top step in the axisymmet-
ric system is special8,18,26 in the sense that continuum theo-
ries break down near this step and hence near the facet. The
difference in the boundary conditions is essentially due to the
presence of this special step in the axisymmetric case which
provides a nonzero adatom flux for the facet edge. As can be
seen in Fig. 6, all the terraces in the straight-step model are
smoothly varying and no such special step exists. The result-
ing facet motion is simplified but highlights the subtleties
and complications involved when modeling the evolution of
actual facets that are bounded by closed steps. We emphasize
again that continuum theories break down near the facet of
the axisymmetric step system due to the presence of a single
rapidly shrinking step on the facet. Such a step does not exist
in the straight-step case and as a result, its continuum theory
is valid all the way to the facet edge as can be seen in Fig. 6.

There is another important difference between the facets
in the straight-step and circular-step systems. Not only is the
macroscopic adatom flux nonzero on the circular facet, but
this flux also exhibits “quasiperiodic” behavior in time. A
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FIG. 8. Collapse time simulation data and related quantities,
together with analytic predictions, for an axisymmetric nanostruc-
ture. �a� The facet radius as a function of time switches from O�t1/4�
to O�t�, confirming prediction �49�, shown as a solid line. At the
collapse times tn, the facet radius was approximated by the radius of
the innermost step rn+1�tn�. The number of initial steps is N=120
and the step-interaction parameter is g=10−8. �b� Collapse times
from simulation data compared with theoretical prediction �50�
when the initial number of steps N=120 and the step-step interac-
tion parameter g=10−8. �c� Simulation data for scaled deviations,
En /N4, from the collapse times of an infinite structure are compared
to analytic prediction �51� for different values of the step-interaction
parameter g. In the data, the collapse times for an infinite structure,
tn�� ,g�, were approximated by tn�N=500,g�.
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quasiperiodic adatom flux arises because of the regular col-
lapse of the top step, viz. tn=O�n4� when n�1. Although the
time between collapses is not constant, the behaviors of the
facet radius and the adatom flux on the facet between two
successive collapses, �tn , tn+1� �for example�, are qualitatively
similar to the behaviors during �tn+1 , tn+2�, �tn+2 , tn+3�, and so
on. As we noted above, the facet adatom flux had been taken
into account in continuum treatments of facet expansion.8,26

Furthermore the adatom flux’s quasi-periodic behavior has
been well documented.8,27 However, to our knowledge, the
quasiperiodic time behavior has not been explicitly incorpo-
rated into any continuum theory. The solution profiles in
Refs. 8 and 26 effectively rely on a “homogenized” adatom
flux that results from taking a time average of the quasi-
periodic one. This in turn results in solution profiles and
facet boundaries that have been coarse-grained in time. More
details on this coarse-graining procedure can be found in
Ref. 27.

IV. CONCLUSIONS

In this paper, we have studied the effect that the finite
height has on the morphological relaxation of 1D and axi-
symmetric crystal structures. In the 1D case, we discovered
that there is a switch in the time behavior of the facet edge
position �measured from the centerline as shown in Fig. 1�a�
and defined by where the step density extrapolates to zero in
the step simulations� from O�t1/4� to O�t1/5� when finite
height effects become significant. We were able to show this
behavior by solving the discrete step equations numerically
and from a continuum model of step motion. In the axisym-
metric case, we considered the limit of weak step interactions
and used a zero-g theory to show that the time behavior of
the facet radius switches from O�t1/4� to O�t�.

We were also able to quantify how step collapses are af-
fected by the presence of the substrate �see Eq. �50��. In
infinite axisymmetric crystals, the motion of the top step is
very regular and the collapse times obey a simple algebraic
law, tn=O�n4� for an initial linear cone, provided that n is
sufficiently large. To apply this rule in experiments, the num-
ber of steps between the facet and the substrate must be large
enough for finite height effects to be negligible, i.e., the num-
ber of collapses must be much smaller than N, the initial
number of steps. In particular, when step interactions are
negligible, we have shown in this paper that the tn=O�n4�
law breaks down when n /N	8 /9. We believe that our
zero-g theory should be applicable to many experiments
where g3 /g1 is moderate and a /L�1, rendering the key ma-
terial parameter �relative step-step interaction strength� g
small, g�1.

Although we think our theory will be quite accurate when
g is negligible, it is important to understand how a nonzero g
will affect our predictions. We expect that the most important
difference between experimental data and our zero-g theory
will be that collapse times are affected much more quickly
by finite height effects. Recall that the zero-g theory predicts
nonzero deviations, �En� /N4	0, from the N=� case only
when n /N	8 /9. For nonzero g, the simulation data suggest
that these deviations become nonzero for n /N�8 /9. How-

ever, these effects may not be experimentally detectable for
small values of n /N. Furthermore, the zero-g theory does not
predict the nonmonotonic behavior of G: a full solution to
Eq. �44� should yield curves for G that are: �i� nonzero for
n /N�8 /9 and �ii� nonmonotonic. We leave the task of de-
riving these curves for future work.

When we studied axisymmetric structures in this section,
the focus was on step configurations that were uniformly
spaced initially. However, we think that the long-time O�t�
behavior of the facet radius is actually independent of the
initial shape. Note that in Fig. 7�b�, s1��� is determined by
the initial condition. In contrast, s2��� is determined by the
rarefaction fan. We expect that in the g→0 limit, changing
the initial condition will modify the evolution of the facet
radius for ���0, but the motion of the facet for �0����̃0
will remain unaffected, apart from a change in the B−1/3 pref-
actor in Eq. �49� coming from a modified matching condi-
tion.

The result minn�En /N4�=O�g1/2� demonstrated in Fig. 4
raises the prospect of inferring the ratio g3 /g1 simply by
measuring step collapse times provided that the ratio a /L �L
is the initial terrace width� and the initial number of steps N
are known. Constructing the En requires knowledge of col-
lapse times for infinite structures, which can come from the
theoretical result tn=O�n4�. A full solution to Eq. �44� should
also confirm the O�g1/2� behavior which was obtained in this
paper solely from numerical simulations.

The main extensions of this work relate to boundary con-
ditions for the base step. As pointed out in Sec. III B, we
were not able to derive boundary conditions for the base step
from Eqs. �19� and �20�. This resulted in our shock wave
theory being somewhat incomplete. In particular, we did not
know the boundary conditions at s=1 in Fig. 7�b� and were
not able to find s3���. On a related issue, the case of het-
eroepitaxial substrates was not considered at all in this paper.
Although strain effects have been studied by many research-
ers in the context of epitaxial growth �see, for example, Ref.
43� it is unclear how the presence of a lattice mismatch
would affect the motion of the base step and the facet in our
present system. Finally, we mentioned in Sec. III C the issue
of a quasiperiodic adatom flux on the facet. An attempt was
made to account for this flux in Ref. 27 but an implementa-
tion of this condition is still lacking.
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APPENDIX A: EXPANSION OF EQ. (31) NEAR FACET

We seek a solution for F near the facet w1 in the form
F�x , t�=�i=1

� An�t��x−w1�t��n/2, which satisfies condition �33�,
with A1�t�	0; similar expansions were used in Refs. 8 and
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26 to describe the facet evolution in axisymmetric structures.
Then conditions �34� and �35� imply that

A1A2 = 0, �A1�

2A1A3 + A2
2 = 0, �A2�

A2A3 + A1A4 = 0, �A3�

2A2A4 + 2A1A5 + A3
2 = 0, �A4�

so that A2=A3=A4=A5=0. By substituting

F = A1�x − w1�1/2 + A6�x − w1�3 + ¯ + An�x − w1�n/2 + ¯

�A5�

directly into Eq. �31�, we can obtain all the An, n�6 in terms
of A1 and w1. For example, by setting equal coefficients of
�x−w1�−1/2 we obtain A6=4ẇ1 /105�. Thus, two free coeffi-
cients �which are functions of time�, A1�t� and w1�t�, are left
to be determined by conditions �36� and �37�.

APPENDIX B: NUMERICAL SOLUTION OF EQ. (42)

First, we map the original domain �−�0 ,0� onto �−1,0�
via the change in variable y=� /�0. Second, the dependent
variable is taken to be q� p2 to regularize the solution near
the facet edge: it can be shown that p���=O���−�0� and,
thus, q���=O��−�0� as �→�0. Singularities at facet edges
are due to the nonanalyticity of the surface free-energy
density.28,29,44 Equation �42� becomes

q� −
�0

4

5 � yq�

2�q
+ �q	 = 0, �B1�

which is to be solved for q�y� on �−1,0� using the boundary
conditions

q�− 1� = 0, �B2�

q��− 1� = 0, �B3�

q�0� = �2, �B4�

q��0� = 0, �B5�

q��0� = 0. �B6�

Our method involves solving Eqs. �B1�–�B6� to obtain p
=�q for some � and then using a root-finding procedure to
find the unique � that yields �−�0

0 p���d�=1 /2. As we show
below, this method yields a solution for p consistent with
condition �35�, which is not invoked explicitly in Eqs.
�B2�–�B6�.

Equation �B1� is singular at y=−1. The numerical domain
of solution is therefore restricted to be �−1+d ,0� for some
0�d�1. Our implementation used d=1 /100. Boundary
conditions �B2� and �B3� must be replaced by values of q
and q� at y=−1+d, obtained through a series expansion. We
take q�y�=�m=0

� cm�y+1�m/2 to be the form of q near the facet

edge.17 �The coefficients cm here should not be confused with
the terrace adatom densities, ci, used in the main text.� In our
numerical procedure, we used �=12 and this value gave suf-
ficient accuracy in order to compare with step simulation
data. Noting Eq. �B3�, it is straightforward to show that c1
=c3=c4=0 in the expansion for the variable q. Substituting
the series expansion for q into Eq. �B1�, we obtain

c5 = 0, c7 = −
8

525
�c2�0

4,

c8 = 0, c9 =
8

1575
�c2�0

4,

c10 = 0, c11 = −
4

3465

c6

�c2

�0
4, c12 = −

1

1200

c7

�c2

�0
4.

�B7�

Therefore, the coefficients cm, m=5,6 , . . . ,12 can be ob-
tained in terms of �c2 ,c6�. These two constants are intro-
duced as additional �unknown� parameters along with �0.
Since Eq. �B1� is of fourth order, we require seven boundary
conditions altogether. The three conditions �B4�–�B6� apply
at y=0 and the remaining four conditions are given by series
expansions at −1+d:

q�− 1 + d� = c2d + c6d3 + O�d7/2� , �B8�

q��− 1 + d� = c2 + 3c6d2 +
7

2
c7d5/2 + O�d7/2� , �B9�

q��− 1 + d� = 6c6d +
35

4
c7d3/2 +

63

4
c9d5/2 + O�d7/2� ,

�B10�

q��− 1 + d� = 6c6 +
105

8
c7d1/2 +

315

8
c9d3/2 +

693

8
c11d

5/2

+ 120c12d
3 + O�d7/2� . �B11�

The numerical solution was obtained using MATLAB’s
boundary-value problem solver BVP4C. After recovering p���
from q�y�, the area under p was found using a trapezoidal
rule for each value of �. Numerically, we found that
�c2 ,c6 ,�0 ,��= �0.175,0.000,1.936,0.341� gave a p��� that
satisfied �−�0

0 p���d�=1 /2. This solution is plotted in Fig.
6�b�. Note that c6=0 within the accuracy of our algorithm;
hence, there is no cubic term in Eq. �B8�, and the behavior of
q�−1+d� is consistent with the form of expansion �A5� as
expected.

APPENDIX C: MATERIAL PARAMETERS

Here we give the values for key material parameters of
Si�111� and derive the step energetic parameters g1 and g3
used in Eqs. �52� and �43�, respectively.

The terrace diffusivity and attachment-detachment coeffi-
cient take the form24
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D = D0e−Ed/kBT, �C1�

k =
k0

ceq
e−Ek/kBT, �C2�

where we take ceq=a−2e−2�/kBT and the prefactors k0 and D0
are determined from D� and k�, which apply at 900 °C in
Table I.

The step line tension g1 is determined by24

g1 =
�

a
, �C3�

where �= �
a −

kBT

a ln coth� �
2kBT � is the step-free energy.24

In general, the step-step interaction energy g3 accounts for
both entropic and elastic repulsions. For purely entropic in-
teractions, g3 can be expressed in terms of the step stiffness
through g3= �
kT�2

6a3�
.24 If elastic dipolar repulsions with poten-

tial U�x�=A /x2 are also included �where A for Si�111� is
given in Table I�, this expression is modified to24

g3 =
�
kBT�2

24a3�
�1 +�1 +

4A�

�kBT�2	2

. �C4�

Finally, the dimensionless step-step interaction parameter
g in Eq. �6� can be found in terms of g3 by taking the limit
r̃i−1, r̃i, r̃i+1→� while keeping �r̃i+1− r̃i� fixed in Eqs. �14�
and �15�. This procedure yields

�i � �2�a2g3

3L3 	
 L3

�r̃i − r̃i−1�3 −
L3

�r̃i+1 − r̃i�3� . �C5�

Hence, by comparison with Eq. �6�, we obtain

g =
2�a2g3

3kBTL3 , �C6�

which can be calculated using the values in Table I. The
atomic volume is calculated as �=a3.

APPENDIX D: DERIVATION OF FACET RADIUS
EVOLUTION AND ASSOCIATED COLLAPSE TIMES

When considering shocks in the solutions of Eq. �45�, a
conservation form u�+�s=0 is needed. Here u is the density
of some conserved quantity �conserved even across shocks�
and � is its flux. Then, the Rankine-Hugoniot �RH� jump
conditions39 apply and provide an equation for the shock
velocity ṡ, namely, ṡ= ��� / �u�. Here the square brackets in-
dicate the jump in the enclosed quantity across the shock
discontinuity. For example, �u�=u+−u−, with u� being the
values of u immediately to the right �+� and left �−� of the
shock position s=s���.

In the axisymmetric system, volume is conserved, with
the density given by the step area u=
�2. Thus the appro-
priate conservation form for Eq. �45� is

��2�� + �2

�
	

s
= 0, �D1�

taking u=�2 and �=2 /�. When the facet is treated as a
shock, a further subtlety arises, as Eq. �D1� does not supply
a value for the volume flux to the left of the facet edge in
Fig. 7�a� where �=�−=0. However, to the left of the shock,
no steps are present and clearly there can be no contribution
to the volume flux. Therefore, a reasonable assumption is to
set this flux to zero �−=0.

Thus, from the RH shock conditions corresponding to Eq.
�D1�, we have the equation

dsj

d�
=

�2/��
��2�

=
2

�+
3 , for j = 1 and 2, �D2�

for the shock speed, where �+ is, in fact, the facet radius.
Then using the characteristic Eq. �46�, we obtain the implicit
solution valid when s	s1���, �	0, and s+��1:

� = s + �/�3 �D3�

⇒��s,�� = �1/4R�s/�1/4� , �D4�

where the function R satisfies

R�z� = z +
1

R3�z�
. �D5�

Using Eq. �D2�, s1��� must satisfy the ordinary differential
equation

TABLE I. Table of material parameters for Si�111� used to calculate key constants in step and continuum
models. T=900 °C for the values of D� and k�.

Parameter Parameter name Value Reference

D� Terrace diffusivity 3.4�1010 Å2 /s Ref. 37, Table I

k� Attachment-detachment coefficient 6.9�106 Å /s Ref. 37, Table I

� Kink energy 0.202 eV Ref. 24, Table III

Ek Energy barrier for attachment-detachment 0.61 eV Ref. 24, Table VIII

Ed Energy barrier for diffusion 0.97 eV Ref. 24, Table VIII

A Step elastic interaction potential coefficient 0.16 eV Å Ref. 45

a Step height 3.1 Å Ref. 2
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ṡ1��� =
2

�3/4R3� s1���
�1/4 	 . �D6�

We seek a solution to this equation �subject to s1�0�=0� in
the form s1���=c�1/4 for some constant c. Substituting into
Eq. �D6�, we obtain cR3�c�=8 and using Eq. �D5�, we obtain
c= � 2

�3
�3. Therefore the facet radius is

��s1���,�� = R�c��1/4 = �3�1/4, �D7�

when ���0, in agreement with Ref. 18. The step simulation
collapse times are

tn =
1

�4

s1
4

c4 = t�n4, �D8�

where t�=c−4= ��3 /2�12. Values of t� when g�0 were estab-
lished numerically in Ref. 26 along with its asymptotic be-
havior when g→0. The value of s at which s1��� switches to
s2��� satisfies

1 − s = t�s4 �D9�

⇒s0 = 8/9 �D10�

⇒�0 = 1/9. �D11�

The characteristics originating from �� ,s�= �0,1� satisfy

� = ��1 − s� �D12�

⇒
ds

d�
= −

1

�
= −

1

�3 , �D13�

where 1��� tan� 

4 +��. Therefore,

��s,�� = � �

1 − s
	1/3

, �D14�

when 1�� / �1−s�� tan� 

4 +��. Using Eq. �D2� with Eq.

�D14�, we obtain

ṡ2��� =
2�1 − s2�

�
�D15�

⇒s2��� = 1 −
B

�2 , �D16�

for some constant B which is found by the matching condi-
tion s1��0�=s2��0�:

B = �1 − s0�t�2s0
8 = 1/36. �D17�

Note that from Eq. �D14�, we have a switch in the time
behavior of the facet radius

��s1���,�� = �3�1/4, � � �0,

��s2���,�� = B−1/3�, �0 � � � �̃0. �D18�

From Eq. �D16�, we have

� =
�B

�1 − s2

, �D19�

where �B=3−3. Therefore, our predictions for the step col-
lapse times tn and scaled deviations En /N4 are

tn�N;0� = �t�n4, n/N � 8/9

N4
�B

�1 − n/N
, 8/9 � n/N � s̃0, � �D20�

En�N;0�
N4 = �0, n/N � 8/9

�B
�1 − n/N

− t�� n

N
	4

, 8/9 � n/N � s̃0. �
�D21�
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