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ABSTRACT

Atherosclerosis is an inflammatory disease in medium-sized and large arteries caused

by accumulation of lipids within the arterial wall. It is a complex process that involves

lipid infiltration through the sites of endothelial damage, formation of foam cells, and

the creation of plaques. These plaques can rupture, releasing clotting agents into the

bloodstream, causing a complete blockage of blood vessels, resulting in heart attacks

and strokes. The complex process of atherosclerosis starts with a benign thickening of

the intima. Thus, intimal thickening is a precursor to atherosclerosis.

The goal of this work is to investigate intimal growth in arteries, induced by hemo-

dynamical shear stress, through finite element simulation using the FEniCS computa-

tional environment. In this thesis, we develop a mathematical model that establishes a

relationship between growth and hemodynamics, which should be viewed as providing

a framework for coupling hemodynamic simulations to mathematical descriptions of

atherosclerosis, both of which have been modeled separately in great detail. In our

model, the growth of the intima depends on cross section geometry and features of

hemodynamics (shear stress). In this work, the arterial wall is modeled as three dis-

tinct layers, the intima, the media, and the adventitia, each with different material

properties. Since the average mechanical properties of an arterial wall are more or

less uniform along the axial direction, we introduce a 2D model of an arterial cross

section in which all variables of interest are invariant with respect to the axial direc-

tion. Blood flow through vessels is approximately non-turbulent and unidirectional

in regions of the vessel away from vessel arches and bifurcations. In addition, in our

model, the timescale for vessel growth and deformation is very large compared to the

timescale of the blood velocity. Thus, taking time average of the velocity of blood flow

xv



with respect to the timescale of our simulations, the blood flow can be approximated

to be steady. Further, the the dissipative forces near the boundary (the endothelium)

becomes large so the tangential component of the velocity vanishes. Hence, we assume

that the blood flow is steady, non-turbulent, and unidirectional. The blood flow is

modeled with a Poisson equation (derived from time-independent and unidirectional

Navier-Stokes equation in absence of external forces) with a zero-flow Dirichlet bound-

ary condition at the endothelium. We calculate the shear stress from the solution to the

Poisson equation. Damages to endothelial cells induce platelets from blood to attach

to the sites of injury that release platelet-derived growth factor (PDGF). In addition,

endothelial cells themselves release PDGF in response to shear stress. In this work,

since we are interested in the release of PDGF by uninjured endothelial cells, we as-

sume that the endothelial cells release PDGF in a shear-dependent manner. Although

PDGF causes cell proliferation both in the intima and the media, but since we are only

interested in the growth of intima, growth is assumed to occur only in the intima and is

modeled using morphoelasticity theory. The PDGF transport is modeled as a steady-

state diffusion-degradation equation since the time scale of diffusion and degradation

of PDGF happens at a time scale much much smaller compared to timescale of the

intimal growth. We solve the diffusion-degradation equation in all three layers subject

to a Neumann boundary condition on the endothelium that registers the flux of PDGF

through the endothelium into the intima and a Dirichlet boundary condition on the

outer boundary of the adventitia. Since the endothelium is far away from the outer

boundary of the adventitia and considering the diffusion and degradation of PDGF

across the arterial wall, the PDGF concentration at the outermost boundary of the

arterial wall can be considered to be negligible. Therefore, we impose a zero PDGF

Dirichlet boundary condition on the outermost boundary of the arterial wall. Finally,

the optimal displacement fields for the arterial wall and the lumen are obtained by

minimizing strain energy functionals for the arterial wall and the lumen.

We simulate intimal growth for three distinct arterial cross section geometries. We
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show that the rate of intimal thickening varies depending on different cross section

geometries. For cross section geometries that are annular, the growth of the intima is

uniform in the angular direction, the endothelium stays a disk as the intima grows. For

non-annular cross section geometries, thicker intimas grow more compared to thinner

ones, rate of intimal thickening depends on the distance to the center of flow (greater

distance, less growth), shear stress is negatively correlated with distance from the flow

center (where the flow velocity is maximal), the maxima and minima of curvature in-

crease and decrease, respectively, with time, the PDGF concentration increase with

time, the shape of the lumen becomes polygonal over time for non-annular cross sec-

tions. We also observe multiple remodelling phases of the lumen (the lumen dilates,

followed by a contraction, followed by a dilation). This multiple remodelling feature

is completely new and hasn’t been addressed in any literature yet. Each layer of the

artery has transversely helical collagen fiber fields which when stretched offer resistance

to outward dilation, thus contributing to the total energy of the system. While there

are several interpolation and probabilistic techniques available to model the fiber dis-

tributions, we implemented the technique of numerical conformal maps to model the

fiber field distribution in each of the layers.

The mathematical model established in this thesis should be viewed as providing a

framework for coupling hemodynamics simulations to mathematical descriptions of

atherosclerosis, both of which have been modeled separately in great detail. This work

can be extended to include the process of atherosclerosis and its progression that will

shed light on the association among hemodynamics, intimal thickening and atheroscle-

rosis, which is associated with life-threatening diseases. With the advancement of

medical technologies, our model, coupled with a model for atherosclerosis, can help

predict cardiovascular diseases in advance.
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Chapter 1

INTRODUCTION

Cardiovascular diseases have become a major health concern in our modern indus-

trialized society. Often factors like lack of exercise, unhealthy diet, stress and anx-

iety, among many, contribute to cardiovascular diseases. Among different types of

cardiovascular diseases, atherosclerosis is the primary cause for cardiovascular events

like myocardial infarctions and stroke. In the United States alone, heart disease

has been regarded as the leading cause of death since 1950 [23]. Thus, mathemat-

ical models that describe the buildup of atherosclerotic plaque are very important.

Atherosclerosis has been the subject of many investigations over the past few decades

[66, 40, 41, 9, 21, 64, 19].

Endothelial dysfunction is considered as one of the early markers of atherosclerosis [7].

One of the consequences of endothelial dysfunction is that it can cause low-density

lipoprotein (LDL) trafficking from the bloodstream into the intima. This starts a

cascade of inflammation processes, resulting in atherosclerosis. Atherosclerosis is a

gradual phenomenon and has several stages of progression.

Shear stress, along with the geometry of blood vessels, are important predictors of

atherosclerosis [8]. In the article, Dolan et. al. observed that vessel bifurcations and

arches are prone to atherosclerosis due to complex flow patterns at these locations.

An unidirectional and constant flow is observed in parts of the arterial tree that have

uniform cross section geometry and oscillatory flows are observed at vessel bifurcations

and arches [4]. Regions experiencing low shear stress are prone to the development of

atherosclerotic lesions; an observation similar to that made by Zaromytidou et. al. in

[81]. The shear stress depends on the geometry of the vessel. At vessel bifurcations,

1



the lateral wall experiences low oscillatory shear stress while the point of bifurcation

experiences high shear stress (see Fig. 2 in [4]).

1.1 General properties of blood flow

Blood is generally considered to have non-Newtonian properties. The non-Newtonian

features of blood arise primarily due to the presence of cells and platelets suspended

in the plasma [60]. One of the main features of a non-Newtonian blood flow is that

the viscosity varies with the shear rate. Although blood is non-Newtonian in nature,

Newtonian blood flow models are used extensively. The main important feature of

Newtonian blood is that the dynamic viscosity does not depend on the shear rate. For

a Newtonian fluid, the dynamic viscosity (η) and kinematic viscosity (νk) are related as
η

ρ
= νk, with ρ being the density of blood. In [32], Johnston et. al. state that for mid-

range to high shear rate, a Newtonian model of blood flow can be used, whereas, for low

shear rate, a generalised power law model (that establishes a relation between viscosity

and shear rate) can be used to model a non-Newtonian blood flow. The viscosity of

Newtonian blood is 0.0345 Poise (≈ 4 × 10−6 kPa.s) [32]. In [17], Gijsen et. al.

studied the effects of non-Newtonian and Newtonian blood flow on the velocity profile

at the carotid bifurcation. The authors found that the experimental results were in

good agreement with the numerical results both for a Newtonian and a non-Newtonian

blood flow. Blood flow through arteries can be laminar or turbulent. The Reynolds’

number is used to characterize whether a Newtonian flow can become turbulent or not.

The Reynolds’ number for a non-Newtonian fluid is given by the formula Re = ρaU
νk(0)

[76], where ρ is the density of blood, a is the diameter of the vessel, U is the average

incoming velocity, and νk(0) is the kinematic viscosity of blood when the shear rate is 0.

In [76], Tian et. al. study the effect of Reynolds’ number on the wall shear stress of a 2D

channel with plaque being modelled with the function y = −a+A exp[−(x− x0)
2/b2],

where A and b represent the height and the width of the stenosis, respectively, x0 is the

center of stenosis, and 2a is the width of the 2D flow channel. They experimented for

different values of the ratios A/a (height of the plaque) and b/a (width of the plaque)

2



to observe that (i) the wall shear stress increases on the wall on which the plaque is

located, (ii) greater values of A/a compared to b/a change the characteristics the flow

significantly, and (iii) increasing the Reynolds’ number decreases the wall shear stress.

In [76], Tian et. al. are using a highly idealized representation of a stenosed artery.

Since there is a close relationship between the Reynolds’ number and the wall shear

stress, Reynolds’ number plays a critical role in atherosclerosis. In [38], Ku reports

that the typical Reynolds’ number for blood varies from 1 in small arterioles to 4000

in large arteries .

1.2 Poiseuille blood flow models

Although blood flow, considering it to be Newtonian, is very complex and is determined

by the full solution to Navier-Stokes equation, sometimes the blood flow is modeled as

being laminar. In [55], Olufsen and Nadim observe that in case of small arteries with

radius less than 0.2 cm, the relationship between flow and pressure can be well described

by a Poiseuille law, whereas, for large arteries, one may have to incorporate more

spatial dependence, especially when turbulence arises. In [54], Olufsen studies blood

flow conditions in large systemic arteries using a blood flow model that is axisymmetric,

Newtonian, laminar, and incompressible. In a similar study [56], Olufsen et. al. study

the blood flow in large systemic arteries by reducing the Navier-Stokes equations to

a set of 1D linearized PDEs under the assumption of an axisymmetric Navier-Stokes

equations. In [5], Chiu and Chien state that in the straight parts of the arterial tree,

the flow is laminar, resulting in high shear stress, while in branches and arches, the

flow is highly disturbed, resulting in irregular wall shear stress. In short, there are

simple laminar flow solutions (such as Poiseuille flow) to the Navier-Stokes equations

under special circumstances.

1.3 Flows in complex geometries

As mentioned above, blood flow is qualitatively different in different parts of the arterial

tree. There are several instances when there is a transition of a laminar flow to a
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turbulent one. In the study [62], Quarteroni points out some of the factors that are

responsible for the transition from a laminar flow to a turbulent one. Some of the

factors are physical exercise which increases the flow velocity, a stenotic artery that

increases the Reynolds’ number, and decreased blood viscosity caused by diseases like

anemia. Turbulent blood flows also depend on the percentage of stenosis. In the study

[31], Jahangiri et. al. mention that flow is approximately laminar for stenosis up to

70% while the flow is usually turbulent when stenosis exceeds 80%. Spiral laminar

flows are also observed in arteries [74]. In this study, Stonebridge et. al. examined

blood flow patterns in the common carotid artery, internal carotid artery, external

carotid artery, common femoral artery, superficial femoral artery, and the infra renal

aorta in a cohort of 42 volunteers. They observed that 97% of the volunteers have more

sites with spiral laminar flow compared to other flows. Alongside sudden changes in

vessel geometry, any remodelling of the heart itself induces turbulence in the flow [53].

This study observed that an aortic dilation causes turbulence in the aortic arch. Such

turbulent flows are common at vessel arches and bifurcations, leading to low wall shear

stress and high oscillatory index [43], making these regions prone to atherosclerosis and

plaque progression.

These kinds of changes in the flow pattern induce a change in the mechanoresponse

of the endothelial cells. As a result, there is lipid trafficking into the intima, which

eventually progresses to atherosclerosis. The disease develops as a benign thickening

of the intima which we discuss in Section 1.5.

1.4 Hemodynamics and shear stress

Blood flow and features of hemodynamics like blood pressure, shear stress, and flow

velocity also play a significant role in determining the rate of progression of intimal

thickening and formation of plaques. The blood flow through the lumen of a blood ves-

sel induces shear stress on the endothelium. Researchers have speculated that plaques

can be sensitive to the shear stress magnitude, or the time rate of change of shear
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stress. The nature of the shear stress also impacts the localization, formation, and

progression of atherosclerotic plaques.

In the study [13], Friedman et. al. observed a correspondence between shear stress and

intimal thickening in young and old vessels. They observed that intimas corresponding

to low shear stress in young vessels are thinner compared to high shear stress. But for

older vessels, high shear stress corresponds to thinner intimas compared to low shear

stress.

The progression of advanced atherosclerosis may also depend on the time rate of change

of shear stress. The study [38] observes that plaques form and localize at sites of low

oscillatory shear stress. In [33], Moore Jr et. al. demonstrate that low oscillatory shear

stress is highly correlated with plaque development compared to regions experiencing

a high oscillatory shear stress.

In addition, vessel wall thickness has a correlation with blood pressure as observed in

the study [42]. In this study, Liu and Fung observed a positive correlation between

vessel wall thickness and increasing blood pressure in rats. In another study [80], six

cynomolgus monkeys were fed a diet consisting of 2% cholesterol and 25% peanut oil.

Then the blood flow was increased by constructing an arteriovenous fistula between

the right iliac artery and vein, with the left iliac artery serving as the control. Zarins

et. al. observed that the media cross section area increased twofold, with no difference

in total media thickness, and no difference in the mean intimal thickness between the

right and the left iliac arteries.

1.5 Diffuse intimal thickening and atherosclerosis

Early atherosclerosis begins with the thickening of the intima, known as diffuse intimal

thickening (DIT). DIT can occur even in fetuses. In the study [48], Nakashima et. al.

found evidence of DIT in coronary arteries and the aorta after 36 weeks of gestation.

DIT has been known as a precursor to atherosclerosis [50]. The progression from

DIT to atherosclerosis involves several factors, among which endothelial dysfunction,
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lipid accumulation in the intima, proliferation of SMCs induced by growth factors,

migration of SMCs from the media to the intima are some. As a result of all these

factors, the intima gradually thickens over time becoming a potential site on which

atherosclerosis develops [11, 70]. Many studies have tried to classify atherosclerotic

plaques with respect to their histology and morphology. In [49], Nakashima et. al.

classified early-stage atherosclerosis into four stages, Grades 0, 1, 2, and 3, according

to the lipid deposition level. They showed that Grade 0 atherosclerosis (DIT) showed

no lipid deposits and the absence of macrophages, Grades 1 and 2 showed deposition

of fatty streaks and extracellular lipids in the outer layer of the intima, while Grade

3 (pathological intimal thickening) showed presence of extracellular lipids underneath

a layer of foam cell macrophages. Low-density lipoprotein (LDL) present in the blood

infiltrates the arterial wall because of endothelial dysfunction and undergoes oxidation

to form oxidized-LDL (oxLDL). Macrophages chemotax towards oxLDL [63]. The

macrophages absorb oxLDL to form foam cells and contribute to the formation of

fatty plaques. Another study [57] uses optical coherence tomography to visualize the

morphology of the 8 different stages of plaque progression shown in the table below:
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Types of lesions Characteristics

Intimal thickenings or intimal xanthomas Abundance of smooth muscle cells,

proteoglycan-rich extracellular matrix,

and absence of inflammation

Pathological intimal thickenings Presence of proteoglycans and lipid

Fibroatheromas Lipid-rich necrotic core surrounded by fi-

brous tissue

Thin cap fibroatheromas Large necrotic core sheathed by thin fi-

brous cap

Plaque ruptures Luminal thrombus overlying a thin, dis-

rupted fibrous cap

Eroded plaques Absence of fibrous cap rupture, abun-

dance of proteoglycans and smooth mus-

cle cells in luminal thrombus

Calcified nodules Absence of necrotic core and presence of

calcium

Healed lesions Reparation of disrupted fibrous cap

Table 1.1: Types of lesions and their characteristics

Understanding the progression of atherosclerotic lesions warrants a detailed mathemat-

ical model. Over the last few decades, many investigations have been carried out to

establish a mathematical model of atherosclerosis. An important constituent for de-

veloping a mathematical model is a determination of layer-specific material properties

of an arterial wall. In [27], Holzapfel et. al. determine the layer-specific mechanical

properties of each of the three layers of 13 human nonstenotic left anterior descending

coronary arteries through autopsy. These mechanical properties are often incorporated
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into mathematical models for plaque buildup. In [16], Gasser et. al. present a model

that accounts for the mechanical properties and collagen fiber distribution in each of

the three layers. While [27] and [16] study only the mechanical properties, papers

like [11] and [45] use the properties to make predictions about plaque development and

growth. Fok and Gou [11] simulated intimal thickening under a time-dependent growth

tensor using a hyperelastic framework coupled with morphoelasticity. Mirzaei et. al.

[45] formulated a mathematical model involving macrophages, lipids, necrotic cells,

oxidized lipids, oxygen concentration and platelet-derived growth factor to describe

plaque evolution and vessel growth.

One commonly used measure of cardiovascular risk is intima-media thickness (IMT),

representing the combined thickness of the intima and the media [6]. In [10], Fernández-

Alvarez et. al. provide a summary of different studies that report the association

between carotid IMT and cardiovascular risk prediction. The authors conclude that

carotid IMT is a well-established early marker for carotid atherosclerosis. Thus, as-

sessment of carotid IMT is crucial in predicting future cardiovascular diseases. The

study [2] provides an extensive review of different studies conducted on the IMT of

the carotid artery across a diverse population of different age groups and sexes. In

this study, Aminbaksh and Mancini also referred to studies that measured IMT pro-

gression rate over 2 years and then measured the rate again after a 4 year follow-up.

The authors compared different studies to find that IMT plays a significant role in

determining the risk of a myocardial infarction or stroke. The authors referred to the

Rotterdam Study which concluded that a baseline mean IMT of 0.822 mm or greater

has a strong correlation with myocardial infarction while a mean IMT of 0.75 mm or

greater is strongly associated with the risk of stroke. In addition, if IMT progresses

at a rate of 0.034 mm per year, then there is a increased risk of future cardiovascular

events. In the study [67], Sakakura et. al. studied human autopsy specimens from 17

weeks of gestation to 23 months and observed an increase in intima/media ratio from

birth (0.1) to two years of age (0.3). The authors discussed the progression of plaque
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from a thickened intima to formation of an acellular necrotic core, and classified the

progression into four stages: intimal thickening (AHA type I lesion), intimal xanthoma

(AHA type II lesion), pathological intimal thickening (PIT) (AHA type III lesion),

and fibroatheroma (AHA type IV lesion). The characteristics of each of these lesions

is given in Table 1.1.

In summary, intimal thickening can be considered as the “soil” on which atherosclerosis

develops, as noted by Schwartz et. al. in [70]. Thus, a mathematical model for

simulating intimal thickening is a crucial pre-requisite for modeling and simulating

atherosclerosis. One of the important and interesting aspects of intimal thickening is

that its development is dependent on the shear stress induced on the endothelium due

to the blood flow through the vessel.

1.6 General aims

Researchers have separately studied intima-media thickness and the effect of shear

stress on vessel wall thickness and atherosclerosis. But to our knowledge, there are

fewer studies that tie blood flow, wall shear stress, and the evolution of vessel wall

thickness under the effects of hemodynamics. Since intimal thickening is a precursor

to atherosclerosis, it is essential to formulate a mathematical model to describe the

evolution of vessel wall thickness considering the effects of the hemodynamical features

like shear stress. In this thesis, we provide a mathematical framework to calculate and

simulate intimal growth under a shear stress induced by a Poiseuille flow.

In this thesis, we simulate intimal growth under hemodynamical shear stresses for three

different arterial cross section geometries, an annular cross section and two non-annular

cross sections. We show that the rate of intimal growth differs for different cross section

geometries, thicker intimas grow more compared to thinner ones, the lumen becomes

polygonal with time for non-annular cross sections, how the rate of growth depends

on the distance of the region from the center of flow (point on the lumen where the

magnitude of the Poiseuille flow is maximum). We also show multiple remodelling
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phases of the lumen where the lumen first dilates followed by an contraction followed

by an outward dilation. We also implement a new technique of numerical conformal

maps to simulate collagen fiber fields for each of the three layers of the cross sections.

In addition, we demonstrate that the magnitude of shear stress at a particular point

on the endothelium has a negative correlation with the distance of the point from the

center of flow for non-annular cross sections along with correlations among the distance

of the endothelium from the center of flow, PDGF concentration, and the curvature

of the endothelium. To the best of our knowledge, there does not exist any literature

that investigates how Poiseuille blood flow through different cross section geometries

affect intimal thickening.

The mathematical model and simulations in this thesis shed light on the effects of

hemodynamical shear stress and vessel cross section geometry on intimal thickening

which will help understand why certain areas of the vessels, like arches and bifur-

cations, are prone to intimal thickening and the development of atherosclerosis and

plaques. This model should be viewed as a stepping stone towards a more complete

mathematical framework that gels general hemodynamics and plaque development.

All codes used to generate the results of this thesis can be accessed at https://github.

com/avishmj/intimal-thickening
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Chapter 2

A MODEL FOR SHEAR-INDUCED INTIMAL THICKENING

Platelet derived growth factor (PDGF) is a protein produced by platelets, endothelial

cells, smooth muscle cells, and other kinds of cells. The main functions of PDGF are

to promote cell growth and division, enhance migration of smooth muscle cells within

the arterial wall, and repair arterial tissue by stimulating division of smooth muscle

cells along with synthesis of extracellular matrix proteins. PDGF can be produced and

released by platelets that attach to endothelial cells at sites of endothelial injury. The

endothelial cells themselves can also release PDGF in the absence/presence of shear

stress. In this work, we are ignoring endothelial damage and assume that endothelial

cells release PDGF in response to shear stress only.

To model intimal growth induced by shear stress and PDGF, we need mathematical

models for the blood flow (Section 2.1), the shear stress (Section 2.1.1) due to the

blood flow, the growth and elastic response of the vessel wall (Section 2.2), and the

PDGF concentration (Section 2.3). This section introduces the mathematical models

we considered for our work.

Fig. 2.1 below summarizes our mathematical and computational setup. In Fig. 2.1, the

intima-media interface in the reference configuration will be referred to as ∂Ω
(2)
1 , the

media-adventitia interface will be referred to as ∂Ω
(2)
2 and their corresponding notations

in the grown deformed configuration will be referred to as ∂ω
(2)
1 and ∂ω

(2)
2 , respectively.

The lumen–intima interface (endothelium) in both the reference, ∂Ω
(1)
1 , and the grown,

deformed configuration, ∂ω
(1)
1 , is actually single layer of endothelial cells rather than a

mathematical closed curve. However, it is common practice to represent the interface

as a mathematical closed curve. A constant pressure P is applied to the endothelium
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of the grown deformed configuration. The map Φ takes a point (X, Y ) in the reference

stress free configuration to a point (x, y) in the grown deformed configuration.

Figure 2.1: Cross section of an artery showing the lumen, intima, media and adventitia.

The reference configuration Ω =
⋃3
k=0 Ωk, is mapped to the grown and deformed con-

figuration ω =
⋃3
k=0 ωk and the reference point (X, Y ) is mapped to the point (x, y). Ω

and ω are the reference and deformed domains, respectively. The unit normal vector N

points into the reference-configuration lumen while n points into the deformed lumen.

The inner and outer boundaries of Ωk are ∂Ω
(1)
k and ∂Ω

(2)
k respectively for k = 1, 2, 3 in

the reference frame. These boundaries map to ∂ω
(1)
k and ∂ω

(2)
k in the grown, deformed

frame, respectively.

2.1 Hemodynamics

Blood flow is highly pulsatile. Our simulations represent a mean, time-independent

flow. We have also considered a unidirectional blood flow. This assumption is rea-

sonable when the flow is laminar. We neglect swirling/turbulent blood flow and the

presence of eddies, both of which could be important in atherogenesis. In reality,

both pressure gradient across a vessel and the dynamic viscosity of blood change with

time and also with axial distance. We made these assumptions to simplify an already

complex model. To take into account the effect of the flow on the growth and defor-

mation of the vessel wall, we introduce a mathematical model for the blood flow. At
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the macroscale, the blood flow is well described by the time-dependent incompressible

Navier-Stokes equation, defined in the grown deformed configuration,

∂V

∂t
+V · ∇V =

µl
ρ
∇2V − 1

ρ
∇p+ f , (2.1)

where V, p, µl, ρ, and f = (fx, fy, fz) are the flow velocity, the pressure, the dynamic

viscosity of blood, the density of blood, and the external body force, respectively.

Since the flow is unidirectional and independent of the Z-axis, V = [0, 0, w(x, y)]T and

V ·∇V = 0. Since blood flow occurs at a time scale much much smaller than the time

scale of the process of intimal thickening, we can consider a steady state non-pulsatile

blood flow model. Considering a steady-state in the absence of external body forces

(f = 0), Eq. (2.1) reduces to

−∇p+ µl∆V = 0. (2.2)

Eq. (2.2) is a system of three equations. Since the flow is in the Z-direction, px and py

must be zero. The third equation, along with the assumption that a constant pressure

gradient G is applied along the vessel, can be rewritten as

∆w(x, y) = w2
x + w2

y = −G
µl
, (x, y) ∈ ω0. (2.3)

We impose a no-slip boundary condition at the endothelium ∂ω
(1)
1 as follows:

w(x, y) = 0, (x, y) ∈ ∂ω
(1)
1 . (2.4)

Thus in compact form, Eqs. (2.3, 2.4) can be written as

∆w = −G
µl
, (x, y) ∈ ω0 (2.5)

w = 0, (x, y) ∈ ∂ω
(1)
1 (2.6)

In the above equations, ω0 represents the lumen and ∂ω
(1)
1 represents the endothelium.
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2.1.1 Shear stress on the endothelium

Due to the Poiseuille blood flow through the lumen, the inner boundary of the intima

experiences shear stress in the Z direction. In response to the shear stress, the en-

dothelial cells release PDGF which promotes cell division of the smooth muscle cells

in the intima, causing a gradual intimal thickening.

The mathematical form of the stress for a Newtonian fluid given a pressure p, dynamic

viscosity µl under a given flow V is given by

T = −pI+ µl(∇V +∇VT ). (2.7)

With V = (0, 0, w(x, y)), the stress tensor takes the matrix form,

T =


−p 0 µlwx

0 −p µlwy

µlwx µlwy −p

 . (2.8)

The shear stress on endothelium is

τ = n ·T · ez = µl (n1wx + n2wy) (2.9)

where n is the unit normal on ∂ω
(1)
1 pointing into the lumen and ez is the unit vector

in the Z direction.

2.2 Hyperelasticity and Morphoelasticity

To model the growth and deformation of the vessel layers when subjected to a con-

stant pressure on the endothelium, we incorporated a hyperelastic model coupled with

morphoelasticity. Hyperelasticity is one of the most common ways to describe non-

linear elasticity. It is commonly used for biological tissue modeling [27] and relies on

the existence of a strain energy density function W . In our problem, we use a strain

energy density function that incorporates a neo-Hookean response, a penalty term to

penalize elastic deformations for near-incompressible materials, and a term that regis-

ters the energy contribution from collagen fibers. The form for W is motivated by the

Holzapfel-Gasser-Ogden (HGO) model for a nearly-incompressible material [27, 16].
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2.2.1 Energy functional

An energy functional represents the stored energy of a vessel undergoing deformation

governed by the deformation gradient tensor F = ∇Φ = I+∇u. Here, Φ = X+ u is

a mapping from the reference stress free configuration to the grown deformed configu-

ration as shown in Fig. 2.1 and u is the displacement field. We minimize the energy

functional with respect to the displacement field u to get the optimal displacement that

minimizes a total energy. In this paper, the energy functional is always defined with

respect to the reference stress free configuration. We also incorporate growth into our

model [20]. A pure growth of a domain results in overlapping elements, which results

in a non-physical or non-realistic configuration. As a result, the grown body undergoes

strain to accommodate elements so that they do not overlap: in many situations, a

growth simultaneously induces an elastic response. Thus, we assume that the defor-

mation tensor F can be decomposed into a growth deformation tensor Fg followed by

an elastic response tensor Fe:

F = FeFg. (2.10)

We will assume that the growth deformation tensor takes the form

Fg =


g(x, y, t) 0 0

0 g(x, y, t) 0

0 0 1

 . (2.11)

We assume isotropic growth in the x− y plane and no growth in the z direction.

The energy functional takes the form [11]

Π[Φ] =
3∑

k=1

∫
Ωk

J (k)
g ·Wk(Fe) dA+

P

2

∫
∂Ω

(1)
1

Cof(F)N ·Φ ds. (2.12)

where Fe is the elastic component of the deformation gradient, J = det(F), J (k)
g =

det(F(k)
g ); for k = 1 (intima), F(k)

g = Fg (Eq. 2.11) and for k = 2, 3 (media and

adventitia, respectively), F(k)
g = I; P is the pressure applied on the endothelium, n is
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the unit normal on the endothelium in the direction of the lumen, Cof(F) = JF−T ,

and Wk is the strain energy density function as defined in Eq. (2.14) below.

Since Φ = X+ u, we can write the above equation in terms of u as

Π[u] =
3∑

k=1

∫
Ωk

J (k)
g ·Wk(Fe) dA+

P

2

∫
∂Ω

(1)
1

Cof(F)N · (X+ u) ds. (2.13)

Therefore, solving for ∇Π[u]u′ = 0 for all test functions u′ gives the optimal displace-

ment u. Fok and Gou [11] show that minimizing Π[u] is equivalent to minimizing the

stress formulation of Π[Φ].

The strain energy functions for the intima, media and adventitia are represented by

W1, W2 and W3 respectively [11]:

Wk = µk(I1 − 3)︸ ︷︷ ︸
Neo-Hookean term

+
νµk

1− 2ν
(Je − 1)2︸ ︷︷ ︸

Penalty term

− µk ln Je︸ ︷︷ ︸
Auxiliary term

+
ηk
βk

(
exp

[
βk(1− ρk)(I1 − 3)2 + βkρk(I4 − 1)2+

]
− 1

)
︸ ︷︷ ︸

Energy contribution of stretched collagen fibers

(2.14)

for k=1, 2, 3 representing the intima, media, and the adventitia, respectively [27].

In the above equation, µk, βk, ρk, and ηk are layer-specific material constants (see Table

2.1 for their values), and ν measures the incompressibility of the material; ν → 0.5

corresponds to an incompressible material, whereas a substantially lower value of ν

implies a compressible material. Since biological tissues are mostly composed of water,

they are often modeled as being nearly incompressible. Furthermore, I1, I4 and Je are

defined as follows (physical significance discussed below):

I1 = Tr(FT
e Fe) (2.15)

I4 = b(X, Y )TFT
e Feb(X, Y ) (2.16)

Je = det(Fe) (2.17)
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where (X, Y ) ∈ Ωk and b(X, Y ) are the unit fiber vectors at (X, Y ) in the reference

stress free domain [47]. The fibers are inclined at an angle with respect to the cross

section. For each of the layers, the inclination angles, ϕk, take on different values (see

Table 2.1 for values of ϕk).

The auxiliary term ensures that the stress in the reference stress free configuration is

zero [58]. The penalty term penalizes large deformations (corresponding to Je being

far away from 1) when ν ≈ 0.5. For ensuring incompressibility, we assume det (F) =

J = det (Fe) det (Fg) = JeJg. If Je ≈ 1, then the amount by which elements grow or

shrink is controlled by Jg, the determinant of the growth tensor Fg.

In Eqs. (2.15, 2.17), I1 and I4 are invariants under rotations and translations. The

invariant I1 registers the resultant stretch of an infinitesimal element, from the ref-

erence stress free configuration to the grown deformed configuration, in the direction

of the principal axes. The invariant I4 is the normalized length of the collagen fibers

projected onto the plane of the cross section. In the stress free configuration, either

the fibers are not stretched or are coiled up, representing I4 = 1. We want to register

only the tensile contribution. The contribution of the collagen fibers in the last term

of the strain energy function takes effect only if the normalized fiber length I4 > 1, i.e.,

when the fibers are stretched. Therefore, we introduce (I4 − 1)2+ as

(I4 − 1)2+ =

{
0 , if I4 ≤ 1,

(I4 − 1)2 , if I4 > 1.
(2.18)

If Φ is a map from the reference to the grown deformed configuration, the strain

energy density function is a function of ∇Φ. Then the strain energy functional, Π[Φ],

is an integral consisting of W (∇Φ) as defined in Eq. (2.14), that registers the total

energy stored in the grown deformed configuration due to a displacement u of the

arterial layers. The strain energy density functional is minimized with respect to u

(since ∇Φ = I+∇u, minimizing Π[Φ] with respect to u is the same as minimizing it

with respect to Φ). The minimizer gives the minimum energy deformation of the vessel
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walls. However, the minimizer need not be unique in general. The polyconvexity of the

strain energy density functions Wk guarantees the existence of at least one minimizer

(see [11] for more details).

A proper selection of the appropriate values of the material parameters for the strain

energy function is essential for an accurate analysis of the behavior of vessels under

loading. In this thesis, the values of the parameters are taken from [27], where Holzapfel

et. al. provided a range of values for the parameters and their standard deviations

based on extensive experimental results. We took the mean values of the parameters.

The parameter values are given in the below table.
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Parameters Meaning Values

µ1 Intima shear modulus 27.9 kPa

η1 Intima material parameter 263.66 kPa

β1 Intima material parameter 170.88

ϕ1 Fiber angle in intima 60.3◦

ρ1 Intima material parameter 0.51

µ2 Media shear modulus 1.27 kPa

η2 Media material parameter 21.6 kPa

β2 Media material parameter 8.21

ϕ2 Fiber angle in media 20.61◦

ρ2 Media material parameter 0.25

µ3 Adventitia shear modulus 7.56 kPa

η3 Adventitia material parameter 38.57 kPa

β3 Adventitia material parameter 85.03

ϕ3 Fiber angle in adventitia 67◦

ρ3 Adventitia material parameter 0.55

ν Measure of incompressibility 0.49

Table 2.1: Material parameters and their values. The parameters µk, ρk, βk, and ηk

roughly capture the stiffness of the different layers.

The material parameters in the above table govern the mechanical response of the

arterial wall due to pressure and growth. One of the important and interesting avenues

to explore is the sensitivity of the parameters to the mechanical response of the arterial

wall to growth and deformation. However, such an analysis is not the focal point of

this thesis and thus is beyond the scope.
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2.3 PDGF Transport

As mentioned previously, Platelet-Derived Growth Factor (PDGF) is released by en-

dothelial cells when they experience shear stress. PDGF promotes migration and cell

division of smooth muscle cells (SMCs) within the arterial wall. A healthy intima starts

with a single layer of endothelial cells. With time, there is migration of SMCs from the

media to the intima. These SMCs come in contact with PDGF and proliferate to make

the intima thicker over time. A good review of the biology of PDGF can be found in

[65] where Reidy et. al. found little effect of PDGF on SMCs proliferation but instead

induces a migration of SMCs from the media to the intima.

In practice, it is difficult to measure the distribution of PDGF in tissues, making it

difficult to create a mathematical model for PDGF dynamics. PDGF is a dimer with

A and B subunits. Therefore, proxies for PDGF such as PDGF A mRNA and PDGF

B mRNA levels are measured for different shear stress levels [29]. In this thesis, we

have considered the response of PDGF A mRNA level to shear stress as a model for

the PDGF dynamics.

2.3.1 Diffusion-Degradation Model for PDGF

Let C(x, y, t) be the concentration of PDGF. Since the diffusion and degradation of

PDGF happen at a time scale that is much much smaller compared to the time scale

of plaque growth, we can consider a steady state diffusion-degradation equation for the

PDGF in the arterial wall:

D∇2C − kC = 0, (x, y) ∈ ω1 ∪ ω2 ∪ ω3, (2.19)

−D∂C
∂n

= ζ1m, (x, y) ∈ ∂ω
(1)
1 , (2.20)

C = 0, (x, y) ∈ ∂ω
(2)
3 . (2.21)

where D is the diffusivity of PDGF, k is its degradation rate, n is the unit normal on

the endothelium pointing into the lumen, and m is the relative PDGF A mRNA level.

For finding the diffusion-degradation equation of the PDGF concentration C, there

are two parameters that need to be determined; the degradation constant k and the
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relative PDGF A mRNA level m. In Eq. (2.20), we assume that the flux of PDGF

across the endothelium is proportional to PDGF A mRNA level (which depends on

the shear stress as discussed below) with ζ1 being the constant of proportionality. This

equation is inspired by [29], in which Hsieh et. al. study the effect of shear stress

on the relative PDGF A mRNA and PDGF B mRNA levels. The authors report that

when subjected to an increase of shear stress, the increase in PDGF A mRNA level was

dominant compared to PDGF B mRNA level. So, we considered the flux of PDGF to

be proportional to the relative PDGF A mRNA level and discarded the relative PDGF

B mRNA level.

In this work, we model the PDGF A mRNA level (m) as a saturating function of the

shear stress: m = ζ2
τ

τ + τ0
, where τ is the shear stress due to a Poiseuille blood flow

and τ0 is the baseline shear stress. Therefore, the Neumann boundary condition in Eq.

(2.20) becomes

−D∂C
∂n

= ζ1ζ2
τ

τ + τ0
= Jmax

τ

τ + τ0
. (2.22)

The value of diffusivity D = 0.01 mm2/h is taken from [22]. We leave the degradation

constant k to be a free variable. We assume that the values of D and k are the same

across all the vessel layers.

To our knowledge, there are no studies that investigate how PDGF flux varies with

respect to laminar wall shear stress on the endothelium. However, in [29], Hsieh et. al.

study the relative PDGF A mRNA and PDGF B mRNA levels due to shear stress in

cultured human umbilical vein endothelial cells. The authors observed that the PDGF

A mRNA level increased in a shear-dependent manner when the veins were subjected

to an increasing shear stress ranging from 0 to 6 dyne/cm2 and then plateaued between

6 and 51 dyne/cm2. For finding the PDGF flux, two parameters need to be determined:

τ0 and Jmax. We determine τ0 by fitting data on relative PDGF A mRNA level from the

experiments in [29]. This article studies the effect of shear stress on the relative PDGF

A mRNA and PDGF B mRNA levels but does not report the effect of shear stress on

PDGF levels. The maximum flux Jmax can be determined from [71]. In this paper,
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Shankar et. al. compare the production of PDGF by human umbilical vein endothelial

cells by synthetic peptide ligands and thrombin. The cultured cells were put in 12-

well plates, with each well containing approximately 2× 105 cells, and incubated with

thrombin and thrombin receptor peptides for 24 hours. The PDGF level (ng/well/24

h) was then reported.

In [29], let Ri be the relative PDGF A mRNA level for the shear stress τ (i) (the index i

refers to each of the 8 observations made by Hsieh et. al.). We then performed a least

squares fit to the residual

res(χ, τ0) =
8∑
i=1

∣∣∣∣∣Ri − χ
τ (i)

τ (i) + τ0

∣∣∣∣∣
2

By performing two-parameter least squares for χ and τ0, we obtained the optimal values

τ0 = 0.32 Pa and χ = 44.62 that minimized the above residual: see Fig. 2.2 below

Figure 2.2: PDGF flux as a response to the shear stress at the endothelium. The

flux saturates as the shear stress increases. The flux is approximated by the equation

−D∂C
∂n

= Jmax
τ

τ + τ0
with D = 0.01 mm2/h. We performed a two-parameter (χ and

τ0) least squares fit. The optimal values for the two-parameter least squares fit were

χ = 44.62 and τ0 = 0.32 Pa.
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We are now interested in finding the maximum PDGF flux Jmax from [71]. We took the

mean value of the control (1.33 ng/well/24 h) to be the value for Jmax and scaled it to

ng/mm2/h using the fact that a well consists of 2× 105 cells approximately [71]. The

human vasculature is fractal in nature [14], giving rise to an enormous surface area. In

the article [37], Krüger-Genge et. al. mention that about 6×1013 endothelial cells cover

a total surface area of 6000 m2. Assuming that 6000 m2 of surface area is covered by 6×

1013 endothelial cells, 1 cell occupies approximately
6000 m2

6× 1013
= 0.0001 mm2. Then as

a result, 1.33 ng/well/24 h is equivalent to
1.33

(2× 105)× 10−4(24)
= 0.003 ng/mm2/h.

With this reduced value of Jmax, we get the relation between shear stress and PDGF

flux as illustrated in Fig. 2.3

Figure 2.3: PDGF flux as a response to the shear stress at the endothelium. The

flux saturates as the shear stress increases. The flux is approximated by the equation

−D∂C
∂n

= Jmax
τ

τ + τ0
with D = 0.01 mm2/h, Jmax = 0.003 ng/mm2/h, and τ0 =

0.32 Pa.

The material parameters considered in our model are given in Table. 2.1. The Table.

2.2 below refers to the physical parameters along with their meanings.
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Physical parameters Meaning Values

G Pressure gradient across the vessel 0.013 kPa/mm

νl Dynamic viscosity of blood 4× 10−6 kPa.s

k PDGF degradation rate constant 0.0002 h−1

D PDGF diffusivity 0.01 mm2/h

Jmax Maximum PDGF flux 0.003 ng/mm2/h

τ0 Baseline shear stress 0.3× 10−3 kPa

α Growth rate 0.5/year

C0 Baseline PDGF concentration 0.01 ng/mm2

Table 2.2: Physical parameters and their values.

2.4 Growth of the intima

Since PDGF promotes cell division, we define the growth rate γ(x, y) to be

γ(x, y) = α
Cm

Cm
0 + Cm

, (x, y) ∈ ω. (2.23)

for some constant C0, a Hill coefficient m, and a reference growth rate α. We have

chosen a Hill function assuming that the rate of growth saturates for large PDGF

concentration.

For the intima, media, and the adventitia, the growth tensor takes the form

Fg =


1 + γt 0 0

0 1 + γt 0

0 0 1

 (2.24)

We assume that there is no growth in the axial direction which implies that the entry

in the (3,3) position of Fg is 1.

In this thesis, we have chosen m = 4, C0 = 0.01 ng/mm2, and α = 0.5/year. Since the

(1, 1) and (2, 2) components of Fg are the same, the growth is isotropic in the x and y

directions.
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Chapter 3

COMPUTING FIBER FIELDS USING NUMERICAL CONFORMAL
MAPS

An arterial vessel has three layers, namely, the intima, the media and the adventi-

tia. Each of these layers is modeled to have two families of strain-stiffening collagen

fibers that are transversely helical. In an unloaded configuration, these fibers are coiled

up. In the case of a pressurized lumen, these fibers stretch and start to resist further

outward expansion. As the fibers elongate, they stiffen, affecting the mechanical re-

sponse. Having a mathematical model of vessel expansion is crucial in cardiovascular

applications such as predicting stenosis and simulating hemodynamics. Thus, to study

the mechanics of the vessel wall under loading, it is important to calculate the fiber

configurations in the unloaded configuration. The aim of this section is to introduce

a new technique of using conformal maps to numerically calculate the fiber field in a

general arterial cross-section. The technique relies on finding a rational approximation

of the conformal map. First, points on the physical cross section are mapped to points

on a reference annulus using a rational approximation of the forward conformal map.

Next, we find the angular unit vectors at the mapped points, and finally a rational ap-

proximation of the inverse conformal map is used to map the angular unit vectors back

to vectors on the physical cross section. We have used MATLAB software packages to

achieve these goals.

Cardiovascular diseases, leading to heart attacks (myocardial infarction) and stroke,

are among the prime causes of mortality in modern society. Often increased stress

levels, lack of exercise and many other factors are associated with cardiovascular dis-

orders. Myocardial infarction is one of the most common causes of fatality and occurs

when blood flow to the heart muscles is blocked. It has been the subject of many
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investigations over the past few decades [72, 61, 78, 73, 46].

One of the most important factors behind myocardial infarction is the blockage of ar-

teries (stenosis). As coronary arteries undergo blockage, the heart experiences more

pressure to maintain the blood flow, resulting in increased stress on the heart muscles,

usually leading to heart failure. Thus, it is of prime importance to provide a math-

ematical model that can capture the dynamics of stenosis, and a crucial component

of these models is an accurate mechanical model of the artery [15]. For the mechani-

cal model, we need a strain energy density function from which we can calculate the

lowest energy deformation; from the strain energy function, the stress response of a

hyperelastic material can be derived (see [24], Chapter 6). The mathematical form of

the strain-energy density function for nearly incompressible arterial tissue consists of

several terms: a neo-Hookean term and a contribution from collagen fibers [11]. In

general, the strain energy density function takes the form

W = WNH(I1) +Waniso(I1, I4, I
∗
4 ) (3.1)

where WNH(I1) = µ(I1 − 3) is a neo-Hookean function of I1 = Trace(C) with µ being

a layer-specific material parameter, C = FTF is the right Cauchy-Green tensor that

registers the deformation from the reference to the deformed domain, and F is the

deformation gradient. A commonly used term for Waniso(I1, I4, I
∗
4 ) is

Waniso(I1, I4, I
∗
4 ) =

η

2β
exp[β(1− ρ)(I1 − 3)2 + βρ(I4 − 1)2+]

+
η

2β
exp[β(1− ρ)(I1 − 3)2 + βρ(I∗4 − 1)2+]. (3.2)

The term Waniso(I1, I4, I
∗
4 ) registers the anisotropy of the model [28, 68] due to the

presence of two families of collagen fibers with normalized lengths I4 and I
∗
4 (see Section

3.1 below for more details). The constants ρ, η and β refer to the material constants

of each of the layers. The other prime factor to consider while taking into account the

dynamics of stenosis is the stiffness of the collagen fibers. In Eq. (3.2), βρ determines

the stiffness of a layer. A higher value of βρ implies a higher degree of stiffness compared
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to a lower value of βρ. The degree of stiffness could dictate the rate of lumen occlusion

due to intimal growth [44].

In a healthy coronary artery, the intima consists of a single layer of smooth muscle cells

(SMCs) and no collagen fibers. Over time there is an influx of SMCs from the media

into the intima. A gradual thickening of the intima occurs when the SMCs undergo

cell division. The proliferation of the SMCs in the intima and accumulation of lipids

result in the formation of lesions. Katsuda et. al. [34] observed localization of collagen

fibers around the lesions.

Although there is no histological evidence of transverse helical collagen fibers in the

intima, studies like [11, 28] have assumed a two-family fiber model for the strain energy

functional for the intima.

It is of significant importance to model the orientation of the fiber fields and predict

how they change in order to describe accurately the response of the arterial walls due to

loading. Computational techniques to explicitly compute fiber fields in general arterial

cross sections using non-probabilistic approaches are rarely documented. In this study,

we introduce conformal maps as an alternative to interpolation techniques when it

comes to modeling fiber fields in 2D vessel cross sections.

Over the past few decades, some intensive investigations have been carried out to sim-

ulate and provide models for the distribution of fibers in the layers of an arterial vessel.

When it comes to the myocardium, fibers also play an important role, and there have

been many studies that attempt to numerically construct fiber fields within the my-

ocardial wall. In [59], Plank et. al. introduce a Laplace-Dirichlet Rule-Based (LDRB)

algorithm to assign fiber orientations to heart models. In this study, the authors use

linear interpolation for calculating fiber orientations within the myocardium. Deter-

ministic techniques like interpolation are very common when modeling fibers in the

heart. In [79], Wong and Kuhl solve a Poisson equation subjected to the Dirichlet con-

ditions that the fiber orientations in the heart vary gradually from −70◦ to 80◦ from

the outer to the inner wall. Theofilogiannakos et. al. [75] study a post-mortem human

27



heart. They reconstruct a continuous fiber field from experimental measurements of

the actual fiber direction at a set of discrete points within each slice. In [1], Akyildiz

et. al. perform a diffusion tensor imaging (DTI) of seven carotid plaques. They ob-

serve that in advanced stage carotid plaques, the predominant fiber orientation is in

the circumferential direction, with the elevation angle being zero or close to zero.

Fibers also play an important role in governing the dynamics and mechanics of an

arterial wall. Microscopically, fibers are oriented helically around the lumen and are

mostly aligned with wall boundaries with a small amount of dispersion [52]. Therefore,

in studies of vessels that have annular cross sections, fiber fields are assigned to the

circumferential direction by simply computing the unit tangential vector. However,

in reality, arterial cross sections are not perfectly annular. In such cases, the fiber

orientations are sometimes modeled using interpolation techniques similar to the ones

discussed above for myocardial tissue. For example, Fok and Gou [11] calculated the

fiber orientations as weighted averages of the tangent vectors on the Jordan boundaries

(simple closed curves homeomorphic to a unit circle) of an arterial layer.

In addition to several interpolation models for computing and simulating fiber orienta-

tions, there are several studies on probabilistic approaches for computing fiber field ori-

entations. In [15], structural continuum frameworks are developed, taking into account

the dispersion of the collagen fiber orientations. A probability density function of the

fiber orientation in the reference frame is used in [26] for the construction of the strain

energy function. Another study [69] used maximum-likelihood estimation to determine

the angle of the fibers along with a model to quantify collagen fiber dispersion. Simi-

larly, in [36], a density function describing the distribution of the collagen fibers is incor-

porated into the strain energy function, and it evolves as the fibers orient themselves in

the direction of the maximum Cauchy stress. Cacho et. al. [3] establish a relationship

between the fiber end points and their arc lengths, which is estimated from image data.

The mechanical response of collagen fibers, subjected to stress, is determined by a ran-

dom variable approximated by a beta distribution. There is also open source software,
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FEBio (https://febio.org/), that simulates fiber orientations using probability dis-

tributions. In FEBio, a random distribution of fiber orientation is assigned to the points

on the domain, and the average strain energy density function is calculated (https:

//help.febio.org/FebioUser/FEBio_um_3-4-Section-4.3.html). The type of dis-

tribution function can be chosen from a range of distribution functions, which pro-

vides one with options of selecting spherical, ellipsoidal, circular, elliptical, von Mises

and π-periodic von Mises distributions according to the geometry under consideration

(https://help.febio.org/FebioUser/FEBio_um_3-4-Subsection-4.3.3.html).

3.1 The collagen fibers

We consider an infinitely long cylindrical artery that has its cross section aligned with

the X -Y plane, and every cross section is mechanically and geometrically identical

for every Z. Each of the three layers of an artery (intima, media and adventitia) has

transverse helical collagen fibers associated to it as shown in the Fig. 3.1

Figure 3.1: Schematic diagram of transversely helical collagen fibers. Image credit:

https://www.comsol.com/blogs/using-curvilinear-coordinates/

These collagen fibers offer resistance to the expansion of the arteries. In the reference

configuration, they remain in their lowest energy state. As soon as the arteries start
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to dilate under pressure, the collagen fibers start to uncoil, offering resistance to fur-

ther dilation of the artery. As the collagen fibers stiffen gradually, it takes more and

more energy to dilate the vessel. The collagen fibers have an inclination angle that

is independent of the Z axis. Inclination angle is the angle made by the transversely

helical collagen fibers with respect to the X -Y plane. To incorporate the effect of the

collagen fibers on deformation, we introduce a variable I4 for each of the layers, intima,

media and adventitia. I4 is the normalized length of the collagen fibers. As the vessel

is loaded, I4 increases. However, in reality, there are two families of fibers. One family

is oriented at an angle ϕ, with respect to the axial direction, while the other is oriented

at an angle π − ϕ. We introduce I4 and I∗4 to represent fiber lengths for each family:

I4 = b(X, Y )TCb(X, Y ), I∗4 = b∗(X, Y )TCb∗(X, Y ). (3.3)

where b =
[
b1 b2 b3

]T
and b∗ =

[
b1 b2 −b3

]T
are the unit fiber vectors at the

point (X, Y ) in the reference stress-free/unloaded domain corresponding to each of the

families of the fibers. In our work, since we ignore the residual stresses, the stress-free

configuration is the same as the unloaded configuration. From the definitions of b and

b∗, we see that I4 = I∗4 . Hence, Waniso in Eq. (3.2) only depends on I1 and I4 and

takes the form

Waniso(I1, I4, I
∗
4 ) =

η

β
exp[β(1− ρ)(I1 − 3)2 + βρ(I4 − 1)2+]. (3.4)

The inclination angle, ϕ, is different for each layer, so the length of the fiber, pro-

jected onto the X -Y plane, is also different for each layer. In the reference stress-

free/unloaded configuration, I4 = 1 since C = 1, and b is a unit vector. Fb gives us

the deformation of the unit fiber vector in the deformed configuration.

3.2 Numerical conformal mapping

The function b(X, Y ) for any physical cross section is not easy to calculate for a

general point (X, Y ). In the previous section, we explored different strategies for

computing b(X, Y ). Since the calculation is done numerically, many algorithms prove
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to be computationally intensive. The main idea here is to come up with a new approach

using numerical conformal maps to calculate b(X, Y ).

We introduce a reference annulus with inner radius ρ and outer radius 1, with 0 < ρ < 1.

Given a physical cross section, the idea is to construct a conformal map that maps the

physical cross section to the reference annulus.

f

g

ω

f(z)=ω

δω

δz=g'(ω)δω

Physical cross section Reference annulus

Figure 3.2: Conformal mapping of fiber fields between the reference annulus and the

physical cross section. f is the forward conformal map from the physical cross section

to the reference annulus, and g is the inverse conformal map from the reference annulus

to the physical cross section. We map z to ω using f , find the unit fiber vector δω

in the reference annulus and map it back to the fiber vector δz in the physical cross

section using the derivative of the inverse conformal map g.

There are a few reasons behind choosing conformal maps. First, the fiber field in

the reference annulus is very easy to compute. For any point (U, V ) on the annu-

lus, the unit fiber direction vector can be derived easily by calculating the vector[
− sin(θ) cos(θ)

]T
, where θ = [arctan(V, U)]; arctan is the four-quadrant arctan-

gent. The other advantage of a conformal map is that it preserves angles locally. The

fiber fields in a general cross section should satisfy some basic properties. First, fiber
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vectors at the boundaries between the intima, media and adventitia should be tangen-

tial: We assume that the fibers from one layer do not penetrate the adjacent layers.

Second, the field should vary smoothly across the layers of the vessel. A smooth fiber

field is essential for the strain-energy function to be well defined. General maps that

are not conformal will not preserve angles: They can map tangential vectors in the

annulus to non-tangential vectors in the physical cross section. However, for conformal

maps, vectors tangent to boundaries remain tangential. Thus, the aim is to create a

conformal map from the reference annulus to the physical cross section as shown in

Fig. 3.2.

Since the fiber field in the reference annulus can be computed easily, we can find the

fiber field in the physical cross section simply by multiplying the unit fiber vector δω

with the derivative of the inverse conformal map:

δz = g′(ω)δω (3.5)

where δω = − sin θ+i cos θ is the unit fiber vector on the reference annulus at the point

ω, δz is the fiber vector in the physical cross section, and g is the inverse conformal

map from the reference annulus to the physical cross section. The projected vector is

proportional to [Re(δz) Im(δz)]T . This vector is inclined at an angle ϕ. Therefore,

b ∝
[
Re(δz) Im(δz)

√
Re2(δz) + Im2(δz) tanϕ

]T
. Therefore, in order for b to have

unit length, we can write

b =


b1(X, Y )

b2(X, Y )

b3(X, Y )

 =


Re(δz)

Im(δz)√
Re2(δz) + Im2(δz) tanϕ


/

L (3.6)

where L =
√

(1 + tan2 ϕ)(Re2(δz) + Im2(δz)), and ϕ is the inclination angle of the

fibers in each of the layers. In the study [28], Holzapfel et. al. inferred the inclination

angles (along with other material constants) by fitting to stress-strain data. They

showed that in human coronary arteries, ϕ ≈ 60.3◦, 20.61◦ and 67◦ for the intima,

media and adventitia, respectively.
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3.3 Analytic functions and AAA approximation

Let’s consider simply connected domains as a first step to understanding the method.

The idea [77] is to construct the unique conformal map f : Ω 7→ D, with Ω being a

smooth simply connected domain bounded by a Jordan curve P and D being the open

unit disk, such that f(0) = 0 and f ′(0) > 0. Then, h(z) = log(f(z)/z) is a non-zero

analytic function on Ω that is continuous on Ω̄ and can be written as h(z) = u(z)+iv(z),

where u(z) and v(z) are real harmonic functions in Ω and continuous on Ω̄. Any point

zp = reiθ on the Jordan boundary P is mapped to f(zp) = eiψ, where ψ ∈ R, with

|f(zp)| = 1. Then, u(zp) + iv(zp) = i(ψ − θ)− log r, where r, θ ∈ R for zp ∈ P .

Writing f(z) in terms of h(z), we get

f(z) = zeu(z)+iv(z) (3.7)

where u(z) satisfies the Laplace equation with a Dirichlet boundary condition:

∆u = 0; u(z) = − log |z|, z ∈ P. (3.8)

In Eq. (3.7), v(z) is a harmonic conjugate of u(z) satisfying v(0) = 0. Solving Eq.

(3.8) and finding its harmonic conjugate v(z) gives the algebraic form of the conformal

map f(z) according to Eq. (3.7). The solution to Eq. (3.8) is approximated by the

real part of a complex analytic function:

u(z) ≈ Re

n∑
k=0

ckz
k (3.9)

for some n, where ck = ak + ibk, ak, bk ∈ R, and b0 = 0, Therefore,

u(z) ≈
n∑
k=0

(
akRe(zk)− bkIm(zk)

)
; b0 = 0. (3.10)

Since z ∈ P and u(z) = − log |z|, we plug in distinct points sampled from P into

− log |z|, forming the left-hand side of Eq. (3.10). For the right-hand side of Eq.

(3.10), we get a weighted linear combination of ak and bk for each of the points z ∈ P .
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To set up a least squares problem, let’s sample 8n points on the Jordan curve P ,

z0, z1, . . . , z8n−1. Then, from Eq. (3.10), we get


1 Re(z0) −Im(z0) . . . Re(zn0 ) −Im(zn0 )

1 Re(z1) −Im(z1) . . . Re(zn1 ) −Im(zn1 )
...

...
...

...
...

...

1 Re(z8n−1) −Im(z8n−1) . . . Re(zn8n−1) −Im(zn8n−1)





a0

a1

b1
...

an

bn


≈


− log |z0|

− log |z1|
...

− log |z8n−1|


(3.11)

The above matrix equation can be written in a compact form as Ax ≈ d. Solving

the least squares problem in Eq. (3.11), we get the coefficients a0, a1, . . . , an and

b1, b2, . . . , bn. Plugging the coefficients into Eq. (3.10), we get u(z), and since v(z) is

the harmonic conjugate of u(z), it takes the form

v(z) ≈
n∑
k=0

(
akIm(zk) + bkRe(zk)

)
. (3.12)

Once we get u(z) and v(z), they can be substituted in Eq. (3.7) to get the conformal

mapping f(z).

For a smooth doubly connected domain, there are two Jordan boundaries P1 and P2,

and we employ a similar strategy to the one above. However, there are differences

in the formulation of the problem [77]. The strategy for a smooth doubly connected

domain is to find a conformal map f(z) that maps the domain to a circular annulus

with inner radius ρ such that 0 < ρ < 1, where ρ is known as the conformal modulus,

and the outer radius is 1. If P1 and P2 are the outer and the inner Jordan boundaries,

respectively, of the smooth doubly connected domain, then f satisfies f(P1) = S and

f(P2) = ρS, where S is the unit circle. Note that ρ is an unknown that must be found.

The approximation of u(z) for a smooth doubly connected domain takes the form

u(z) ≈ Re

n∑
k=−n

ckz
k (3.13)
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where ck = ak + ibk, for some ak, bk ∈ R and b0 = 0. Since v(z) is the harmonic

conjugate of u(z), we get

u(z) ≈
n∑

k=−n

(
akRe(zk)− bkIm(zk)

)
(3.14)

v(z) ≈
n∑

k=−n

(
akIm(zk) + bkRe(zk)

)
. (3.15)

Thus, the Dirichlet boundary conditions for u(z) will be

u(z) =

{
− log |z| , z ∈ P1,

− log |z|+ log ρ , z ∈ P2.
(3.16)

Similar to finding u(z) for a smooth simply connected domain, we solve the Laplace

equation ∆u = 0 subjected to Dirichlet boundary conditions in Eq. (3.16) to find u(z)

and its harmonic conjugate v(z). Since there are two Dirichlet boundary conditions

for u(z), we get two matrix equations. To set up a least squares problem, we sam-

ple 8n points from each of the Jordan boundaries. From P1, we sample the points

z0,1, z1,1, z2,1, . . . , z8n−1,1. Similarly, for the Jordan boundary P2, we sample the points

z0,2, z1,2, z2,2, . . . , z8n−1,2. Now, since log ρ is unknown, the conformal map can be found

by solving the least squares system

Ax ≈ C (3.17)

where
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A =



Re(z−n0,1 ) −Im(z−n0,1 ) . . . Re(zn0,1) −Im(zn0,1) 0

Re(z−n1,1 ) −Im(z−n1,1 ) . . . Re(zn1,1) −Im(zn1,1) 0
...

...
...

...
...

...

Re(z−n8n−1,1) −Im(z−n8n−1,1) . . . Re(zn8n−1,1) −Im(zn8n−1,1) 0

Re(z−n0,2 ) −Im(z−n0,2 ) . . . Re(zn0,2) −Im(zn0,2) −1

Re(z−n1,2 ) −Im(z−n1,2 ) . . . Re(zn1,2) −Im(zn1,2) −1
...

...
...

...
...

...

Re(z−n8n−1,2) −Im(z−n8n−1,2) . . . Re(zn8n−1,2) −Im(zn8n−1,2) −1



, x =



a−n

b−n

a−n+1

b−n+1

...

an−1

bn−1

an

bn

log ρ



,

and C =



− log |z0,1|

− log |z1,1|
...

− log |z8n−1,1|

− log |z0,2|

− log |z1,2|
...

− log |z8n−1,2|



.

Solving the least squares problem in Eq. (3.17), we get the coefficients as well as the

conformal modulus. From the least squares solution, we can construct u(z) and v(z) to

get the conformal map f(z) according to Eq. (3.7). We implement the conformal map

numerically using the open source package chebfun (https://www.chebfun.org/,

http://www.chebfun.org/examples/) and conformal2 (http://www.chebfun.org/

examples/complex/ConformalMapping2.html). The Fourier series approximations of

Jordan boundaries P1 and P2 take the parametric forms r1(θ) and r2(θ), respectively.

Multiplying the parametric forms by eiθ gives us the sampled points on the Jordan

boundaries in the forms r1(θ) cos(θ)+ ir1(θ) sin(θ) for P1 and r2(θ) cos(θ)+ ir2(θ) sin(θ)

for P2. The function chebfun samples 8n points from each of r1(θ)e
iθ and r2(θ)e

iθ to
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set up the least squares problem in Eq. (3.17). The function conformal2 solves the

least squares problem to find the series approximation of f(z), and then the AAA

algorithm takes the series expansion form of f(z) and converts it to a barycentric ra-

tional approximation [51]. The reason for using the AAA algorithm is that the rational

approximation uses a smaller number of coefficients than a polynomial representation

of f(z) [51].

The AAA algorithm samples m, with m ≤ 16n, distinct points, also known as sup-

port points, from the Jordan boundaries of the physical cross section. Let’s call these

points z1, z2, . . . , zm. These points are then mapped to their corresponding images,

f1 = f(z1), f2 = f(z2), . . . , fm = f(zm), on the boundaries of the reference annulus

using the forward map f(z) in Eq. (3.7), using a set of non-zero complex weights

w1, w2, . . . , wm. The function conformal2 returns a function handle f, with the values

of zj, fj and wj, for j = 1, 2, 3, . . . ,m. Then, the barycentric rational representation

of f(z) takes the form

f(z) =
m∑
j=1

wjfj
z − zj

/
m∑
j=1

wj
z − zj

(3.18)

(see Theorem 2.1 [51]). According to [51], for reasonable choice of zj, the construction

of the barycentric rational approximation becomes well conditioned. This improves the

numerical stability of the conformal map. It should be noted that the AAA algorithm

uses the Arnoldi factorization of A in Eq. (3.17), representing Eq. (3.13) through an

orthogonal polynomial basis rather than monomials.

For the inverse conformal map g, the AAA algorithm samples k distinct points, Z1, Z2,

. . . , Zk, from the boundaries of the reference annulus, with k ≤ 16n. The corresponding

points Fj ≡ zj on the Jordan boundaries of the physical cross section are known,

satisfying g(Zj) = Fj for j = 1, 2, . . . , k, using a set of non-zero complex weights

W1,W2, . . . ,Wk. The code conformal2 returns another function handle for the inverse

conformal map g(z), written as finv in the codes in the GitHub link (provided towards

the end of this thesis), containing the values of Zj, Fj and Wj for j = 1, 2, 3, . . . , k,

from which the barycentric rational approximation of the inverse conformal map can
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be constructed in the form g(z) = N(z)/D(z). Then, the derivative of g(z) can be

written as

g′(z) =
N ′(z)D(z)−N(z)D′(z)

D(z)2
; N ′(z) = −

k∑
j=1

WjFj
(z − Zj)2

, D′(z) = −
k∑
j=1

Wj

(z − Zj)2
.

(3.19)

Then, the unit fiber vector in the physical cross section can be found using Eq. (3.5).

The code conformal2 also returns the value of the conformal modulus ρ.

3.4 Results

Given a general arterial cross section, we find the forward and the inverse conformal

map through barycentric rational approximation of f and g. Thus, for each of the

layers, we find the fiber field on the corresponding reference annulus and map the fiber

field back to the physical cross sections by applying Eqs (3.5) and (3.6). Following the

mapping procedure as shown in Fig. 3.2, the resulting fiber fields are computed in Fig.

3.3.
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Figure 3.3: Conformal mapping of fiber fields between the reference annulus and the

physical cross section for each of the three layers of an artery. Here we show mappings

for two different cross sectional geometries. ρ is the conformal modulus. The values of

m for the conformal map for the intima in (d) to (a), media in (d) to (b), and adventitia

in (d) to (c) are 29, 30, and 26, respectively. The values of m for the conformal map

for the intima in (h) to (e), media in (h) to (f), and adventitia in (h) to (g) are 34, 24,

and 25, respectively.

Fig. 3.3 (a)–(c) represents the fiber field in the reference annulus for each of the

three layers. (a) represents the reference annulus for the intima of the physical cross

section in (d). Similarly, (b) and (c) represent the reference annuli for the media

and the adventitia, respectively, corresponding to the physical cross sections in (d).

(e)–(h) represent the reference annuli for the intima, media and adventitia and the

physical cross section, respectively, for a different physical cross section geometry. The

conformal modulus ρ is different for each of the reference annuli. A 3D visualization

of the fibers is shown in Fig. 3.4.
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Figure 3.4: 3D view of the fiber fields for the three layers. Region colored red is

the intima, region colored green is the media, and the region colored brown is the

adventitia. The angles of inclination with respect to the plane for the intima, media

and the adventitia are 60.3◦, 20.61◦ and 67◦, respectively. On the media-adventitia

interface, we define the inclination angle to be 67◦, and on the intima-media interface,

we define the inclination angle to be 60.3◦.

We also applied our technique to Fig. 2(a) of [48], which is a cross section of an adult

right coronary artery, and generated the fiber fields in each of the three layers.

Figure 3.5: Fiber fields generated by the method of conformal maps for the cross section

in Fig. 2(a) of [48].
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The computation of fiber fields is of utmost importance in an accurate model for

arterial mechanics. We have shown that, by using conformal maps, we can achieve

that goal efficiently. To calculate the fiber fields using conformal maps, we only need a

representation of the Jordan boundaries of the three layers. Provided with the Fourier

series, the MATLAB function conformal2 then calculates the conformal modulus ρ,

the forward function handle f and the inverse function handle finv, which are necessary

to create the barycentric rational approximations of the forward and the inverse maps.

Using the barycentric rational approximations, we then create the fiber fields for each

of the layers in the physical cross section.

However, there are limitations in using the method of conformal maps. Our model

does not take into account fiber dispersion as probabilistic approaches do. However,

that can be readily fixed by introducing appropriate distribution functions to the fiber

orientation in the reference or the physical cross section. Another limitation is that the

code conformal2 diverges for Jordan boundaries that have points with large second

derivatives (i.e., where the curvature is very high). This commonly results in the

crowding phenomenon [77] (see the GitHub link at the end of the thesis for an example).

As discussed in the Introduction, collagen fibers in the myocardium or an artery are

mainly oriented in a “circumferential direction”; however, the notion of a circumferen-

tial direction is not well defined in the case of a general cross section geometry. The

term only makes sense in the case of an annular cross section. Conformal maps make

the concept of a “circumferential direction” mathematically precise. We say that a

fiber vector is oriented in a circumferential direction in a general cross section if and

only if the fiber when mapped to the reference annulus using the forward conformal

map is the angular unit vector.

Our method works for any general cross section geometry (except for the one limitation

mentioned above). Given a cross section geometry, once the map is constructed, the

fiber directions can be found out readily. The lengths of the fibers projected onto the
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physical cross section depend on the angles of inclination. This results in fibers of differ-

ent projected lengths in different layers. Also, computational techniques for explicitly

finding the fiber field for general cross section geometries using non-probabilistic ap-

proaches are rarely documented. Our paper [47] fills the gap and provides an example

of an important biomechanical application of conformal mapping.

This chapter is taken from [47] (see Appendix A for rights).
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Chapter 4

NUMERICAL METHODS

For numerical simulations, we have considered three geometries to work on which are

presented in the next chapter. We should note that these geometries do not correspond

to any specific medical images. For generating the geometries and the meshes, we have

used an open source software called Gmsh and for solving the hyperelasticity problems

using finite elements, we have used FEniCS, which is an open source software based

on Python. For calculating the conformal maps for generating the fiber fields in the

reference configuration, we have used MATLAB.

In order to create a 2D geometry and a mesh in Gmsh, we need to provide the software

with a set of boundary points. So we created the desired geometry using Inkscape and

sampled points from the boundaries using WebPlotDigitizer (https://automeris.

io/WebPlotDigitizer/). Once the points on the boundaries are supplied to Gmsh,

we can create surfaces in between the boundaries. Finally, we create a mesh on the

domains.

We then create the conformal mapping in MATLAB. In order to create the conformal

mapping, we need to provide a Fourier series for each of the boundaries. We then find

the fiber fields for each of the three layers.

In FEniCS, we solve the hyperelasticity problem in two steps using first order elements

on a very fine mesh. The minimization of the total energy is done using Newton

iteration. We have divided the problem into two steps.

The first step includes pressurizing the domain without any growth, which we call

the pressure loop. In this step, we slowly increase P from 0 kPa to 13 kPa using
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small pressure increment. The growth tensor is the identity for every layer. For each

increment, we set the initial condition to be the solution from the previous step. Finally,

we get the solutions u1,p and u2,p to be optimal displacement fields for the arterial layer

and the lumen, respectively, at 13 kPa with no growth.

Next, is the growth loop. We discretize time T into small time increments. We set the

final solutions from the pressure loop, u1,p and u2,p as initial conditions for the first

iteration. For subsequent iterations, we set the initial condition to be the solution from

the previous time step.

We implement other numerical techniques in our model such as meshing the lumen,

regularization of curvature, and formulating all problems in their weak form. These

methods are discussed below.

4.1 Meshing the lumen

In our model, the shape of the arterial lumen evolves over time as the arterial wall

grows and deforms. Therefore, in order to solve for the Poiseuille flow through the

lumen as time progresses, we need a mesh on the lumen. As the lumen shape changes,

the mesh must also deform. To calculate the displacement of the nodes in the lumen

mesh, we minimize the energy functional

Π(ul) =

∫
Ω0

W0(F
(0)
e ) dA (4.1)

where ul which represents the displacement field of the nodes of the mesh and the

energy density function for the lumen is defined as follows [58]:

W0 =
µ0

2
(I

(0)
1 − 3)︸ ︷︷ ︸

Neo-Hookean term

+

(
κ

2
− µ0

3

)
(J (0)
e − 1)2︸ ︷︷ ︸

Penalty term

− µ0 ln J
(0)
e︸ ︷︷ ︸

Auxiliary term

. (4.2)

In the above equation, the superscripts and the subscripts 0 signify that we are dealing

with the lumen.
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Since there is no growth tensor associated with the lumen, we consider F
(0)
g = I.

F(0) = F(0)
e (4.3)

I
(0)
1 = Tr(F(0)T

e F(0)
e ) (4.4)

J (0)
e = det(F(0)

e ) (4.5)

and

F(0) = F(0)
e = I+∇ul. (4.6)

Since the endothelium is a boundary to the lumen, the optimal solution ul is defined

at the endothelium too. The endothelium is a common boundary to the lumen and

the arterial wall which has the displacement field u. Thus, the displacement field must

be continuous across ∂ω
(1)
1 :

ul(x, y) = u(x, y), (x, y) ∈ ∂ω
(1)
1 . (4.7)

There are several ways to mesh the lumen. One of them is to re-mesh the lumen at

every time step using gmsh. However, that may create an issue in node mismatch along

the endothelium. After re-meshing using gmsh, the nodes of the re-meshed lumen don’t

always match with the nodes of mesh on the arterial wall at the endothelium. Since

the displacement field of the adjacent mesh must match the displacement field of the

re-meshed lumen, mismatch in node alignments forbids us from enforcing the Dirichlet

boundary condition (4.7) on the endothelium. Therefore, we opted for another way of

evolving the mesh of the lumen as the three layers of the artery deform using a strain

energy density function on the initial lumen mesh mimicking an imaginary highly

compressible material. We introduced the strain energy density function (4.2) on the

lumen mesh to deform the mesh in a way such that the mesh elements stay regular

(don’t become too skewed). Triangular elements that are close to equilateral stabilize

the numerical solution of the Poiseuille flow. The edges of the elements of the mesh

can be imagined as elastic springs connecting the nodes of the mesh. As the lumen

deforms, the springs configure themselves in a way to minimize the total energy stored
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in them, resulting in more regular elements. So, we have taken µ0 = 1 and κ =
2

3
in Eq. (4.2) to make the penalty term vanish, resulting in filling the lumen with an

artificial, compressible material.

4.2 Regularization of curvature

If the endothelium is parameterized in terms of r(θ), then we calculate the curvature

as
r2 − rr′′ + 2r′2

(r′2 + r2)
3
2

. In this section, we calculate r(θ) from the center (0, 0). Although

most interesting relations between r(θ), τ(θ), C(θ), and κ(θ) are observed when we

calculate these quantities with respect to the center of flow, we chose the center of flow

to be at (0, 0) only for this section to demonstrate the effectiveness of regularization

before differentiation. It is a well known fact that given a noisy function r(θ), taking

a numerical gradient amplifies the noise. Any numerical method will introduce errors

in the node positions, resulting in a noisy r(θ). This can be seen from Fig. (4.1)

below. Although the endothelium in mesh 1 is a perfect circle, the plot of r(θ) is not

a constant. Instead, there is some noise in the data. If we calculate the curvature

using the r(θ) as shown in the plots, the noise in the data amplifies and as a result,

the curvature becomes very noisy. Therefore, one needs to regularize the curvature or

in other words, make it smooth.

There are several different ways to smoothly differentiate noisy data [35]. One way is to

first fit a smoothing spline (https://csaps.readthedocs.io/en/latest/formulation.

html#implementation) through the noisy data set of r(θ). Then we sample data points

from the spline itself and then differentiate to find the curvature. A smoothing spline

f(x) is a real-valued function that minimizes

α

n∑
j=1

|yj − f(xj)|2 + (1− α)

∫ b

a

[f ′′(t)]2 dt (4.8)

where yj are the given data points, a = min(x1, x2, . . . , xN), b = max(x1, x2, . . . , xN)

and α ∈ [0, 1] is the smoothing parameter. If α → 0, then the smoothing spline f(x) is

the least squares straight line fit to the data. On the other hand, if α → 1, then f(x)

is the natural cubic spline interpolant.
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The value of the smoothing parameter should depend on the magnitude of noise present

in the data. We experimented with different values of α for different geometries. For

cross section 1, we considered α = 0.1, while for cross sections 2 and 3, we chose

α = 0.992.

In the below figure, we demonstrate how noisy the curvature can be when we don’t fit

r(θ) with a smoothing spline. The graph for r(θ) is the distance to the endothelium at

time t = 0.

Figure 4.1: Noisy curvature obtained before fitting a smoothing spline through r(θ).

Next, we fit a smoothing spline through r(θ) and differentiate the spline itself instead

of the actual r(θ). The smoothing spline has the smoothing coefficient α = 0.1.
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Figure 4.2: Regularized curvature of the endothelium. The exact curvature is cal-

culated as
1√

lumen area/π
. The mean square error (MSE) between the regularized

curvature and the exact curvature is ≈ 1.14× 10−8.

In Figs. (4.1) and (4.2), we are measuring the distance to the endothelium (the radius)

of the lumen from the center (0, 0). We observe from Figs. (4.1) and (4.2) that the

magnitude of the noise decreases after we regularize the curvature by fitting a spline

through r(θ) before differentiating it numerically. in Fig. (4.2), we calculate the radius

of the lumen at t = 0 and P = 13 kPa as
√

lumen area/π. We observe that the

regularized curvature is approximately the same as the exact curvature.

The error between the regularized and the exact curvature is shown in Fig. 4.3 below
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Figure 4.3: Error between the exact and the regularized curvature. The minimum error

and the maximum error are −0.00027 and 0.00014, respectively.

4.3 Weak forms

A given PDE involves differentiation with respect to the independent variables. In

most real-world problems, this results in PDEs that are hard to solve numerically. A

finite element method is a discretization in space and time, which turns the PDE into

a set of equations defined on only the nodes of the mesh. We multiply the PDE by

a test function. Then integration by parts and introduction of a nodal basis convert

the PDE into a set of algebraic equations on the nodes of the mesh. We solve these

algebraic equations to get an approximate solution of the PDE over the mesh. In our

work, we have three PDEs to solve: one for the Poiseuille flow through the lumen,

one for the diffusion–degradation equation for PDGF distribution, and another for the

stress distribution for the arterial wall when it is in mechanical equilibrium.

4.3.1 Weak form for the Poiseuille flow

Multiplying the Poisson equation with a test function v ∈ C1(ω̄0), such that v = 0 on

boundaries, we get

v∆w = −G
µl
v (4.9)

Integrating Eq. (4.9) by parts over the domain ω0,
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∫
∂ω

(1)
1

v∇w · n ds−
∫
ω0

∇v · ∇w dA = −G
µl

∫
ω0

v dA (4.10)

The boundary term
∫
∂ω

(1)
1
v∇w ·n ds vanishes on ∂ω(1)

1 [39]. Then, the above variational

form becomes ∫
ω0

∇v · ∇w dA− G

µl

∫
ω0

v dA = 0 (4.11)

Therefore, we need to find w(x, y) that satisfies Eq. (4.11) for all test functions v ∈

C1(ω̄).

4.3.2 The weak form of the diffusion-degradation equation

Consider a test function v ∈ C1(ω̄) such that v = 0 on ∂ω
(2)
3 . Multiplying both sides

of the diffusion-degradation equation (2.19) with the test function v, we get,

vD∆C − kCv = 0. (4.12)

Integrating both sides over the domain ω,∫
ω

v∆C dA =

∫
ω

k

D
Cv dA. (4.13)

Integrating by parts, we get,

∫
∂ω

(1)
1 ∪∂ω(2)

3

v ∇C · n ds−
∫
ω

∇v · ∇C dA =

∫
ω

k

D
Cv dA (4.14)∫

∂ω
(1)
1

v ∇C · n1 ds1 +

∫
∂ω

(2)
3

v ∇C · n4 ds4 −
∫
ω

∇v · ∇C dA =

∫
ω

k

D
Cv dA (4.15)

where n1, ds1, n4, ds4 are unit normals and line elements to ∂ω
(1)
1 and ∂ω

(2)
3 , respec-

tively.

Let Γ = −Jmax

D

τ

τ + τ0
. Then from the boundary conditions of the diffusion-degradation

equation, ∫
∂ω

(1)
1

v Γds−
∫
ω

∇v · ∇C dA =

∫
ω

k

D
Cv dA. (4.16)
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Since C = 0 on ∂ω
(2)
3 , we choose trial functions that vanish on ∂ω

(2)
3 . Therefore, the

integral

∫
∂ω

(2)
3

v ∇C · n4 ds4 vanishes.

Rearranging the above equation, we get the the weak form as∫
ω

∇v · ∇C dA+

∫
ω

k

D
Cv dA = v

∫
∂ω

(1)
1

Γds (4.17)

Within an FEM framework, we solve for C(x, y) that satisfies Eq. (4.17) for all test

functions v. The solution C(x, y) gives the PDGF concentration at each point (x, y)

in the vessel layers.

4.3.3 Weak form of the mechanical equilibrium equation

We multiply both sides of the mechanical equilibrium equation by a test function

v ∈ C1(ω̄), where ω = ω1 ∪ ω2 ∪ ω3 to get

v∇ · σ = 0. (4.18)

Using vector calculus identity

∇ · (σv) = (∇ · σ)v + σ : ∇v, (4.19)

the equilibrium equation becomes

∇ · (σv)− σ : ∇v = 0. (4.20)

Integrating both sides with respect to the domain ω and using the divergence theorem

we get,

∫
ω

∇ · (σv) dA−
∫
ω

σ : ∇v dA = 0, (4.21)∫
ω

σ : ∇v dA =

∫
∂ω

(σ · n)v ds. (4.22)

Since σ · n = −pn for (x, y) ∈ ∂ω
(1)
1 and σ · n = 0 for (x, y) ∈ ∂ω

(2)
3 , the above integral

equation reduces to ∫
ω

σ : ∇v dA = −p
∫
∂ω

(1)
1

v n ds. (4.23)

51



Eq. (4.23) above can be rewritten as [11]

Π′[Φ]Φ′ =

∫
ω

σ : ∇v dA+ p

∫
∂ω

(1)
1

v n ds = 0. (4.24)

We solve Eq. (4.24) for test functions Φ′. We should note that the solution Φ of Eq.

(4.24) that minimizes the total stored energy Π[Φ] may not be unique. One reason for

the existence of multiple minimizers of Π[Φ] is that it may be polyconvex [11], implying

the possible existence of multiple local minima.
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Chapter 5

RESULTS AND SIMULATION

In this section, we present the results of the numerical simulations. As mentioned in

the previous section, we simulate for three different vessel cross section geometries.

We should once again note that the cross section geometries do not correspond to any

medical imaging data. We created the geometries using an open source software Gmsh,

we simulated the fiber fields and the results of Chapter 3 with the help of Matlab, and

used another open source software FEniCS to execute the codes.

5.1 A general overview of the results

We simulate intimal growth subject to hemodynamic shear stresses in cases of three

separate cross sections to illustrate the relationship between intimal growth and the

features of hemodynamics.

We have considered a constant pressure of 13 kPa, which corresponds to ≈ 100 mmHg

(the mean arterial blood pressure in a healthy individual with 120 mmHg systolic and

80 mmHg diastolic pressure) on the endothelium, and have simulated our results for

2 years. We show that the initial geometry of cross sections is one of the important

features that dictates the subsequent evolution of the shape of the thickened intima

and most importantly, the rate of lumen occlusion. To illustrate the interesting role of

geometry, we have considered an annular cross section that is axisymmetric and two

other cross sections that are not axisymmetric. The cross sections are shown in Fig.

5.1 below.
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(a) Cross section 1 (b) Cross section 2 (c) Cross section 3

Figure 5.1: (a) Annular cross section with the lumen radius being 3 mm and the thick-

ness of each of the layers being 0.5 mm. (b) General cross section. (c) Atherosclerotic

cross section with a half filled lumen. Region colored yellow corresponds to the lumen,

red corresponds to intima, green corresponds to media, and orange corresponds to the

adventitia.

With intimas that are annular and have uniform thickness, the lumen gets occluded

from all directions at the same rate. But with cross sections that are not annular and

have a non-uniform intima thickness, the thicker parts of the intima occlude the lumen

at a rate faster than the relatively thinner parts of the intima. In addition to the effect

of cross section geometry, we show that the distance to the endothelium from the flow

center (point in the lumen where the magnitude of the Poiseuille flow is maximum) is a

strong predictor of PDGF concentration and shear stress. Another interesting feature

that results from non-annular cross sections is the evolution of the shape of the lumen.

With time, the shape of the lumen tends to become polygonal and the maximum

curvature of the endothelium increases with time. One other important feature is

the role of PDGF in controlling the growth of the intima. Since the growth tensor

incorporates PDGF, one might be led to believe that higher PDGF concentrations in

some parts of the intima causes that corresponding part to grow faster compared to

parts where the concentration of PDGF is lower. However, we show that this might
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not always be true and we demonstrate that for cross section 3.

The properties of the meshes for each of the geometries in Fig. 5.1 are as follows:

Geometries Layers Number of elements Number of nodes Area (mm2)

Cross section 1 Intima 6807 3725 10.21

Media 8007 4374 11.78

Adventitia 9320 5080 13.35

Lumen 18565 9432 28.27

Total 33307 22611 63.61

Cross section 2 Intima 2010 1188 23.82

Media 4547 2491 57.39

Adventitia 9854 5205 130.24

Lumen 5889 3030 70.33

Total 22300 11914 281.78

Cross section 3 Intima 4008 2168 33.87

Media 3477 1950 30.58

Adventitia 4662 2585 39.28

Lumen 3599 1869 30.15

Total 15746 8572 133.88

Table 5.1: Properties of the meshes introduced on the three different geometries.

From Fig. 5.1 above, we see that cross section 1 has a uniformly thick intima to begin

with whereas cross sections 2 and 3 have intimas of varying thickness in the reference

stress free configuration.

5.2 The pressure loop and the growth loop

The dynamics of the arterial cross sections is governed by two factors: the pressure

on the endothelium and the growth tensor. In our model, we are applying a constant

pressure of 13 kPa on the endothelium as the vessel deforms under growth. Under this
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constant load, the vessel deforms, and we aim to find an optimal displacement field

that results in a final configuration that has minimum energy.

Since the minimization scheme relies on Newton’s method, we cannot achieve conver-

gence if our initial guess of the displacement field is not close enough to the actual

solution. If we start with a pressure of 13 kPa on the endothelium, the final displace-

ment field will be far off from u = (0, 0, 0)T , which is our initial guess. So we need to

ramp up the pressure slowly using a for loop. We call this the pressure loop . We

start with a reference stress free configuration and slowly increase the pressure to 13

kPa without any growth (all growth tensors are identities). We save the final solution

of the pressure loop and pass it as an initial guess to the growth loop .

Figure 5.2: Schematic diagram of the algorithm. The pressure loop slowly increases

the pressure from 0 to 13 kPa with no growth. The final solution of the pressure loop

is passed as an initial guess to the growth loop.

Fig. 5.2 above represents a schematic diagram that illustrates the algorithm. In the

figure, we start with the reference stress free configuration (P = 0, t = 0) and an initial
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guess u = (0, 0, 0)T for the displacement field. For the next iteration, we increase the

pressure by an amount dp and pass u = (0, 0, 0)T as an initial guess. Thus, we slowly

increase the pressure to 13 kPa, and for each iteration of the pressure loop , we

consider the solution of the previous iteration as an initial guess. For the pressure

loop, there is no time increment, i.e., t = 0 for all iterations and the growth tensor

for the intima is identity. Once we reach 13 kPa, we then consider the PDGF time-

dependent growth tensor for the intima. Following a similar technique as implemented

in the pressure loop, we slowly increment t by an amount dt, starting the growth loop

from t = 0, applying a constant pressure of 13 kPa on the deforming endothelium.

From the figure above, we note that in the pressure loop, the arterial wall experiences

a dilation (an outward remodeling), while for the growth loop, the arterial wall thickens

(due to thickening of the intima) because of the growth tensor. As a result, the arterial

wall starts to dilate inward (inward remodeling), gradually occluding the lumen.

In the growth loop, we are applying a pressure of 13 kPa on the endothelium and a time-

dependent growth tensor (also incorporating the PDGF) for the intima. So at time

t = 0 years, the configuration must match the final configuration of the pressure loop.

As the endothelium deforms due to pressure, we calculate the Poiseuille flow, the shear

stress, and the PDGF concentration across the arterial wall. The PDGF concentration

is then plugged into the growth tensor for the intima and looped through time. This

growth tensor controls the growth of the intima over time.

We should note here that the choice of the values for dp and dt should be made carefully

as they are very sensitive to mesh refinements. For coarse meshes, the values can be

high, while for a highly refined meshes, the values must be smaller. We decided on

the values for dp and dt based on trial and error. Since the meshes we are considering

for our simulations are highly refined, we started with some small values of dp and dt.

Upon encountering divergence, we reduce their values until we achieve convergence.

From the schematic diagram above, one might assume that an arterial wall initially

experiences an outward remodeling followed by a single continuous phase of inward
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remodeling. However, we observe that this might not always be the case. We demon-

strate in later sections that there can be multiple outward and inward remodeling

phases during the growth loop. To the best of our knowledge, we haven’t haven’t

found any literature that provides evidence of multiple remodeling phases during the

growth of the arterial wall. While the causes behind this multiple remodeling are un-

clear, we suspect that the multiple remodeling is an adaptive response to changes in

wall shear stress and happens in order to regulate or normalize the shear stress on the

endothelium. A detailed investigation of this phenomenon is beyond the scope of this

thesis.

5.3 Code validation

An important aspect of our simulation is to check that the code is working correctly.

This can be done in several ways. For example, solutions can be checked against

analytic solutions when they exist, or against codes that simulate 1D versions of the

model. One of the important parameters in our mathematical model is the Poisson

ratio ν. For lower values of ν, the arterial wall behaves as a compressible material,

while for higher values of ν ≈ 0.5, the arterial wall behaves as an incompressible

material. Another factor that influences the mechanical response of the arterial wall

due to pressure and growth is the presence of collagen fibers. In the presence of collagen

fibers, the arterial wall is much stiffer, while it is more compliant in the absence of them.

We validated our 2D FEniCS code against Matlab codes for two separate cases: one for

a 1D compressible model with P = 1 kPa, ν = 0.4, a time-dependent growth tensor

without any PDGF, and no collagen fibers; and another for a 1D incompressible model

with P = 13 kPa, a PDGF-dependent growth tensor for the intima, and collagen fibers.

Both the Matlab codes simulate an annular geometry. Therefore, we only validated

our FEniCS code with the Matlab codes for cross section 1, which is annular and thus

axisymmetric.
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5.3.1 Validation with the 1D compressible model

The 1D compressible Matlab code [11] considers an infinitely long cylinder with the

three arterial layers. The geometry is annular. In addition, the strain energy density

functions do not have the exponential term and there are no collagen fibers in the

model.

We consider a pressure of 1 kPa acting on the endothelium of cross section 1 in Fig.

5.1. We consider ν = 0.4 and µ1 = 27.9 kPa, µ2 = 1.27 kPa, and µ3 = 7.56 kPa.

Figure 5.3: The Matlab and the FEniCS codes produce almost the same results with

ν = 0.4, P = 1 kPa, µ1 = 27.9 kPa, µ2 = 1.27 kPa, and µ3 = 7.56 kPa. There are no

collagen fibers in any of the layers.

One of the reasons for choosing such a small value of the pressure is the absence of

collagen fibers. When there are no collagen fibers, the arterial wall is very compliant to

outward dilation. So for even a small pressure, we get a large deformation. Since the

minimization follows the Newton’s method, the difference between the initial guesses

and the final solution for the displacement field is very large, resulting in divergence of

the code. We considered the growth tensor for the intima to be G1 = diag(1+ t/2, 1+
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t/2, 1), where the values of t lies in the range [0, 0.4]. We observe from the plots below

that the codes are in strong agreement with each other.

We should note once again that the above results reflect a compressible material since

ν = 0.4. In addition, the graphs above do not incorporate the effects of the collagen

fibers or a PDGF-dependent growth tensor. All of the missing factors play a significant

role in the full model.

5.3.2 Validation with 1D incompressible model

Although in the previous section, we validated the FEniCS code without collagen fibers,

we need to validate it in the case with collagen fibers also. The second Matlab code

we use for validation is an incompressible model that includes fibers and PDGF and

so is closer to the full model. Because it is a fully incompressible model, to compare

against it we take ν = 0.49 or 0.499 in FEniCS.

Figure 5.4: Comparison of areas between the Matlab 1D incompressible model and the

2D FEniCS compressible model.
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The Matlab 1D incompressible code is different from the FEniCS code in some aspects.

In the Matlab code, the strain energy density function doesn’t have the penalty term

(see Eq. (2.14)), implying a perfectly incompressible model. In addition, the shear

stress and the PDGF concentration are derived from the exact 1D solution of the

Poiseuille flow equation and the PDGF diffusion degradation equation, respectively.

In FEniCS, all solutions are derived from finite element approximations. Since we are

comparing our FEniCS code against a fully incompressible model, we take ν to be close

to 0.5. So, we tested our FEniCS code against the Matlab code for ν = 0.49 and

ν = 0.499. In Fig. 5.4, we show the effect of increasing ν from 0.49 to 0.499.

One of the important most important reasons to increase the Poisson ratio to be closer

to 0.5 is to conserve the areas of individual layers as the vessel deforms under pressure

and growth. When ν is away from 0.5, there is a significant loss in area, whereas

when ν is close to 0.499, the accuracy improves. Although the accuracy improves as

we increase ν, the loss of area also increases for sufficiently large time. So no matter

how close ν is to 0.5, there will be significant loss in area as we increase time. This

is a common phenomenon in finite element methods, and is commonly referred to as

volumetric locking.

5.3.2.1 Volumetric locking

For incompressible materials, ν plays an important role in conserving area. Theoreti-

cally, ν → 0.5 results in a perfectly incompressible material. But with ν ≈ 0.5, locking

increases and results in loss of accuracy in solutions, resulting in loss of volume [12].

In this article, Frâncu et. al. suggest ways to alleviate the effects of locking using

various FEM strategies like for example, using discontinuous Galerkin methods or us-

ing higher-order elements. The authors mention that one has to consider fourth-order

elements in order to reduce locking. But using such high order elements is compu-

tationally intensive and to implement a Galerkin method, one has to reformulate the

weak form of the energy functional. The authors propose a mixed formulation method

that minimizes the energy functional with respect to displacement u and a Lagrange
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multiplier p (discussed below in detail). In our model, in order to implement the mixed

formulation, we need to minimize the energy functional with respect to u and the in-

compressibility factor ν. This method finds values of ν that are defined pointwise on

the entire domain subject to the condition Je = 1, thus enforcing incompressibility.

In section 8.5 of [25], Holzapfel describes a two-field variational principle to get rid of

the locking phenomenon. The author mentions that locking is a common FEM phe-

nomenon observed when a single-field approach is used and results from over-stiffening

of the system when low-order elements are used. The two-field variational principle

replaces the coefficient of the penalty term,
µν

1− 2ν
, with a Lagrange multiplier p. So

we solve for the displacement field u and p. In another article [30], Hung et. al. discuss

the technique of smoothed finite element methods to alleviate locking. In this scheme,

each cell is divided into sub-cells and the strain at a particular node is calculated as

a weighted average of strains at neighboring nodes. But as the number of sub-cells

increases, the error in the displacement field is reduced while the stress field loses ac-

curacy. The authors show that expressing the volumetric part of the strain field using

a single sub-cell is enough to alleviate locking.

In this work, we partly alleviated locking by mesh refinement and taking the Poisson

ratio to be 0.499. However, in practice, one can take values even closer to 0.5. With

sufficient mesh refinement and a value of Poisson ratio very close to 0.5, one can

alleviate locking. One of the downside of mesh refinement and taking values of Poisson

ratio very close to 0.5 is that it is computationally intensive. So we settled for a

moderately refined mesh and a Poisson ratio close to 0.5 to increase time efficiency of

the algorithm.

5.4 Solution of Poiseuille flow for three different cross sections

The shape of the lumen changes as the arterial wall undergoes deformation under

pressure and growth. The shape of the lumen in turn affects the solution to the

Poiseuille flow, thus affecting the shear stress and the flux of PDGF. As the shape of

the lumen deforms with growth of the arterial wall, the location of the center of flow
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changes. The distance to the endothelium from the center of flow plays a major role in

determining the shear stress and thus, the PDGF flux. We demonstrate the correlation

among the distance of the endothelium from the center of flow, the shear stress, and

PDGF concentration in Section 5.6. In this thesis, we have considered the pressure

gradient G = 0.013 kPa/mm and the dynamic viscosity to be µl = 4 × 10−6 kPa.s

with a no-slip boundary condition at the endothelium.

5.4.1 Changes in lumen shape on Poiseuille flow

In this section, we simulate the Poiseuille flow through the lumen of the cross section

geometries presented in Fig. 5.1. We demonstrate how the different geometries of the

lumen affect the hemodynamics features such as the magnitude of flow, the changes in

the center of the flow, and the evolution of the shape of the lumen as time increases.

We start with the annular case (cross section 1). The numerical solutions of the

Poiseuille flow for different time points through the lumen of cross section 1 are shown

in Fig. 5.5 below.

(a) t = 0 year. (b) t = 0.5 years.
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(c) t = 1 year. (d) t = 2 years.

Figure 5.5: Numerical solution of Poiseuille flow through the lumen in a vessel pres-

surized with 13 kPa on the endothelium of geometry 1 for different time points. The

green bar denotes the diameter of the lumen with units mm. The color bars represents

the magnitude of the Poiseuille flow velocity (mm/sec). The pink dot represents the

point (vertex) where the magnitude of velocity is maximum.

There are two important observations that we should note from the above figures.

First, the diameter of the lumen follows some interesting dynamics with respect to

time as the arterial wall grows. From t = 0 years to t = 0.5 years, the diameter of the

lumen increases from 7.01 mm to 8.12 mm. But we notice a decrease in the diameter,

8.12 mm to 7.87 mm, as we move from t = 0.5 years to t = 1 year. The diameter again

increases from 7.87 mm to 8.25 mm from t = 1 year to t = 2 years. So as the intima

grows and the arterial wall deforms, the lumen first experiences an outward dilation,

then an inward remodeling, followed by an outward dilation again. To the best of our

knowledge, there does not exist any literature that supports this “multiple remodeling”

and the reason for such dynamics is not clear and warrants further investigation. We

believe that this dynamics of the lumen is an adaptive response to increase in shear

stress. As the lumen begins to contract, the shear stress increases, enhancing the

PDGF flux and reducing the contraction.

In Fig. 5.5, we observe that for an annular cross section geometry, the shape of the

lumen stays as a circular disk as time evolves. For non-annular geometries, the shape
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of the lumen evolves to be polygonal with time. Next, we study the non-annular cross

section 2 in Fig. 5.1b.

(a) t = 0 year. (b) t = 1 year.

(c) t = 1.5 years. (d) t = 2 years.

Figure 5.6: Numerical solution of Poiseuille flow through the lumen in a vessel pres-

surized with 13 kPa on the endothelium of geometry 2 for different time points. The

color bars represent the magnitude of the velocity of Poiseuille flow (mm/sec). The

pink dot represents the point (vertex) where the magnitude of velocity is maximum.

Next, we explore the features of hemodynamics for the cross section 3. Cross section

3 features a slightly thickened intima in the stress free reference configuration. We

observe a drastic change in the shape of the lumen for cross section 3. We also observe

that the lumen gets occluded from the direction where the intima is thicker to begin

with. In addition, the magnitude of the flow decreases with time.
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(a) t = 0 year. (b) t = 1 year.

(c) t = 1.5 years. (d) t = 2 years.

Figure 5.7: Numerical solution of Poiseuille flow through the lumen in a vessel pres-

surized with 13 kPa on the endothelium of geometry 3 for different time points. The

color bars represents the magnitude of the velocity of Poiseuille flow (mm/sec). The

pink dot represents the point (vertex) where the magnitude of velocity is maximum.

We assume the center of flow is always located on a vertex of the lumen mesh. But

physically, the position of the center of flow can be inside of an element instead of

being on a vertex. Thus an error in the position of the center of flow is introduced.

The error is on the order of one edge length of an element. To get an estimate of

the error, we need to calculate the average edge length of the elements of the lumen

mesh. The average edge length of an element in a mesh of the lumen can be calculated

as

√
Area of lumen

Number of elements in the lumen
. If a very coarse mesh is chosen, then a small

number of elements is required to mesh the lumen. In that case, the denominator

becomes small which then increases the average edge length, leading to a significant

error in the position of the center of flow. On the other hand, if a fine mesh with

large number of elements is chosen, the average edge length becomes small, leading to

a small error. We can calculate the average edge length for the meshes introduced on

each of the three cross sections using Table 5.1. For cross sections 1, 2, and 3, the
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average edge lengths of an element on the lumen are 0.04 mm, 0.11 mm, and 0.09 mm,

respectively. So, the average length of the edges of the elements are small. Therefore,

we can consider the coordinates of the center of flow to be quite accurate.

Another possible strategy to locate the coordinate for the maximum flow is to fit a local

paraboloid and find the coordinate of its vertex. In that case, the accuracy depends

on the mesh refinement too. In case the mesh is coarse, the small number of nodes

will lead to a paraboloid that is a bad fit, leading to error in locating its vertex. If the

mesh is sufficiently refined, the large number of vertices will result in a better fit of the

paraboloid, leading to accuracy in its vertex location. So either way, the accuracy of

the flow center depends on mesh refinement.

In addition to mesh refinements leading to errors in the position of the center of flow,

a translation of the deformed cross sections can also cause a change in the coordinates

of the center of flow. If Φ minimizes Eq. (2.12), then any constant vector + Φ is also

a minimizer. To remove this non-uniqueness, we re-centered the cross sections using

the center of mass. We calculated the center of mass of the lumen and the arterial wall

in the reference stress free configuration. After solving for the displacement fields for

the lumen and the arterial wall by minimizing their corresponding energy functionals,

we calculated the new center of mass for the lumen and the arterial wall. We then

calculated the difference in the center of masses and moved the lumen and the arterial

wall back to their center of mass in the reference configuration.

We observe that the center of flow changes rapidly compared to those of the other two

cross sections. The magnitude of the flow reduces from 10, 250 mm/sec at t = 0 years

to 3480 mm/sec at t = 2 years. We see corners developing at around t = 2 years.

These corners lead to an eventual divergence of the code for t > 2. It is possible that

the corners can be removed by doing a local mesh refinement. We also observe that

the lumen tends to be polygonal with time, which is consistent with what we observe

for cross section 2, which is due to asymmetry in the geometry.
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5.4.2 Evolution of shear stress on the endothelium over time

As the geometry of the lumen changes shape due to growth (of the intima only) and

deformation of the three layers, the solution to the Poiseuille flow changes due to the

changed shape of the lumen. Since the shear stress on the endothelium depends on the

solution to the Poiseuille flow following the relation τ = νl[∇u+ (∇u)T ]ez ·n, where n

is the unit normal to the endothelium pointing in the direction of the lumen, the shear

stress on the endothelium also evolves as the geometry of the lumen changes shape.

In this section, we demonstrate how the distance to the endothelium from the center

of flow affects the magnitude of the shear stress for the three different cross section

geometries as they evolve over time.

To represent the shear stress on the endothelium, we introduce a polar coordinate

system centered at where the magnitude of the Poiseuille flow velocity is maximal

(center of flow). In Fig. 5.8, the magnitude of the shear stress along the endothelium

is represented by the τ(θ). Next, we parameterize the endothelium in terms of angle.

One important observation is the difference in the nature of the relation between r(θ)

and τ(θ) for cross section 1, which is annular, and for the other two cross sections

which are not annular. If we solve the 1D annular model for the Poiseuille flow with

the pressure gradient G and radius r, then we get the relation between shear stress and

radius as τ(θ) = Gr
2
. This implies that for an annular cross section, the shear stress

increases or decreases as the radius increases or decreases, respectively.
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Figure 5.8: Evolution of r(θ) and τ(θ) for cross section 1 with time. r(θ) and τ(θ) are

regularized for noise reduction. The dashed lines correspond to the analytical shear

stress calculated as τ(θ) =
Gr

2
, where G = 0.013 kPa is the pressure gradient and

r(θ) =

√
area of lumen

π
is the numerical radius of the lumen.

In the above figure, we observe that as the r(θ) increases or decreases with time, the

shear stress increases and decreases, respectively. In addition, relation τ(θ) = Gr
2
agrees

with the plot above.

Thus, the magnitude of the shear stress depends highly on the geometry of the lumen, in

particular the geometry of the endothelium, as the lumen deforms. For an annular cross

section geometry, the relation between r(θ) and τ(θ) are proportional. However, for

cross section geometries that are non-annular, the relation between the two becomes

inversely related. Here we investigate the relation between r(θ) and τ(θ) for cross

sections 2 and 3: see Fig. 5.9.
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Figure 5.9: Evolution of r(θ) and τ(θ) for cross section 2 with time. r(θ) and τ(θ) are

regularized for noise reduction.

In the above figure, we observe that for a given time t, when r is small, τ is large.

For example, at time t = 0 year, the local minima of r(θ) correspond to the local

maxima of τ(θ), implying an inverse relationship between r and τ . This implies that

at a particular point of time, if a point on the endothelium is closer to the center of

flow, then that point experiences a greater magnitude of shear stress compared to a

point that farther away. We observe a similar trend for other time points as well. In

the case of an annular cross section, the variables τ(θ) and r(θ) are proportional but

for cross sections 2 and 3, there exists an inverse relation between the two variables.

Similarly, in case of cross section 3, we observe a similar relation between r(θ) and τ(θ)

as observed in Fig. 5.13 below.
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Figure 5.10: Evolution of r(θ) and τ(θ) for cross section 3 with time. r(θ) and τ(θ)

are regularized for noise reduction.

5.4.3 Correlations among distance, shear stress, curvature, and PDGF

concentration

The endothelial cells release PDGF in a shear-dependent manner. The flux of the

PDGF is dependent on the shear stress following the relation Γ = 0.003
τ

τ + 0.0003
.

We should note that the flux of PDGF (rather than the amount of PDGF) is dependent

on the shear stress. The concentration in the intima is determined by other factors as

well, such as the diffusivity of PDGF (D), the degradation of PDGF (k), and also the

width of the intima. In this section, we explore how the PDGF concentration along the

endothelium is affected by r(θ), τ(θ), and the curvature of the endothelium κ(θ) as the

vessel deforms with time. One important feature to look for is how the different cross

section geometries (annular and non-annular) affect the relation among the variables.

Another area of interest should be the evolution of the PDGF concentration with time

and the effect of endothelial curvature on local PDGF concentration.

In this subsection, we discuss the relationships among the variables for the three dif-

ferent cross sections. We start with a discussion for the annular case, cross section

geometry 1. As mentioned in Section 5.4.1, as the vessel deforms over time, there is
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an outward dilation, followed by an inward remodelling, which is again followed by an

outward dilation. Since the shear stress at the endothelium is governed by the equation

τ(θ) =
Gr

2
where τ is shear stress, G is the pressure gradient along the vessel, and r is

the radius of the lumen, we expect the flux of the PDGF to be governed by the radius

as well. So during the outward dilation, the points on the endothelium are moving

away from the center of flow experiencing high shear stress, whereas for an inward

remodelling, the points are moving closer to the center of flow experiencing low shear

stress. So we expect the flux of PDGF to be high during the initial outward expan-

sion and low during the inward remodelling. In Fig. 5.11 below, PDGF is increasing

with time but τ is non-monotonic. So, there is no obvious relation between the PDGF

concentration C and τ .

Figure 5.11: Cross section 1: Evolution of the variables of interest over time. All

variables are regularized for noise reduction.
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The only observation that can be made from the above figure is that the PDGF con-

centration increases with time. Since for a specific point of time, all the variables, r(θ),

τ(θ), C(θ), and κ(θ), are almost constant, we cannot infer on how the variations in the

variables for a specific point of time affect the PDGF concentration C(θ). The effect

becomes more distinct when we consider non-annular geometries.

The effect of angular variation on the PDGF concentration becomes readily observable

for non-annular geometries.

Figure 5.12: Cross section 2: Evolution of the variables of interest over time. All

variables are regularized for noise reduction.

The above figure demonstrates the evolution of the variables over time. We find that

there are some important correlations between the variables for a given time point.

For a given time, we observe that as the distance to the endothelium from the center

of flow decreases (increases), the PDGF concentration increases (decreases). Since the
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distance to the endothelium is measured from the center of flow, this implies that

in the course of the deformation of the vessel, if a point on the endothelium comes

closer to the center of flow, the PDGF concentration at that point on the endothelium

increases and when the point moves further away, the PDGF concentration decreases.

Another interesting observation is the relation between shear stress and the curvature

of the endothelium at a given time point. There seems to be negative feedback between

curvature and shear stress. At a given time point, lower curvature implies greater shear

stress, whereas higher curvature implies lower shear stress. This implies that viscous

resistance slows down flow in narrowed lumen or in lumen which has sharp areas in

the endothelium. Also, as time increases, we observe development of a strong positive

correlation between shear stress and the PDGF concentration. In addition, for the

non-annular cross sections, local maxima increase in time and local minima decrease

in time.

We see a similar trend among the variables for cross section geometry 3 as shown in

Fig. 5.13 below.
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Figure 5.13: Cross section 3: Evolution of the variables of interest over time. All

variables are regularized for noise reduction.

Thus, we can see the effect geometry of cross sections have on the shear stress, curva-

ture, and the PDGF concentrations. The correlations among the variables are qual-

itatively different between the annular and the non-annular cases. From the graphs,

the amount of correlation cannot be observed readily. We provide more details on the

correlations among the variables in Section 5.6.

5.5 Deformation of arterial wall

In this section, we present the deformation of the arterial wall at times t = 0, t = 1,

t = 1.5, and t = 2 years for the three cross sections. We demonstrate that thicker

intimas grow more quickly than thinner ones. Also, we show that if the cross section is

annular in the reference stress free configuration, then it stays annular at later times.

For the other cross sections, the endothelium tends to be polygonal with time. In
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addition, one might think that the intima thickens only if the PDGF concentration is

high. We show that this not be always the case. In case of cross section 3, a region can

grow faster if the intima is thicker and even if the region has lower PDGF concentration

compared to another region of the intima.

For annular cross section 1, since the intima is uniformly thick with respect to angle,

the distribution of PDGF at a particular point of time is the same in all directions.

As a result, the intima experiences uniform growth angularly. Below is the snapshot

of the arterial wall deformation at different time points.

(a) t = 0 year. (b) t = 1 year.

(c) t = 1.5 years. (d) t = 2 years.

Figure 5.14: Snapshots of arterial wall remodelling for cross section 1 for four different

time points. The color of the intima represents the magnitude of the PDGF concentra-

tion. The magnitude are given in the color bar. The units of the PDGF concentration

is ng/mm2.

76



In the above figure, it is observed that the cross section remains annular for all time

points. We speculate that if t is large enough, the symmetry of the cross section will not

be conserved. However, the time required to break the symmetry is not the point of this

thesis. As mentioned in Section 5.4.1, we observe an interesting remodelling feature as

the vessel deforms. For the initial phase, the vessel wall undergoes an outward dilation,

in the middle phase, the wall starts to remodel inwards, followed by a last phase of

outward remodeling. This “multiple remodeling” feature hasn’t been observed before

and the reason for this behavior is not clear to us and warrants further investigation.

Researchers have reported two phase remodeling. In the article [18], Glagov et. al.

show that there is an initial phase of outward remodeling followed by a later phase of

inward remodeling. The authors observe that the inward remodeling begins when the

percentage of stenosis exceeds 40%.

We also observe that as the intima grows, the media is getting squeezed more and

more, resulting in a loss of area for the media. Also, a circular lumen tends to remain

circular (symmetry is preserved for short and intermediate times; see Sections 1.4.1 and

1.4.2 of [20]). In this article, Goriely and Moulton present a sample problem of growth

and deformation of an incompressible hyperelastic cylindrical tube. They consider

the radial deformation to be uniform along the axis of the tube and focus only on a

circular cross section of the tube. The idea is to add a perturbation to a symmetric

finite deformation. The important feature of this perturbation is that it does not follow

the symmetry of the finite deformation. They show that adding a perturbation leads

to instability, resulting in a non-circular cross section.

The mechanics of the arterial wall becomes more interesting when a non-annular cross

section is taken into account. In cases of non-annular cross sections, the rate of growth

of different regions of the intima are different. The below figure shows the growth of

the intima for cross section 2 for different time points.
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(a) t = 0 year. (b) t = 1 year.

(c) t = 1.5 years. (d) t = 2 years.

Figure 5.15: Snapshots of arterial wall remodelling for cross section 2 for four different

time points. The color of the intima represents the magnitude of the PDGF concentra-

tion. The magnitude are given in the color bar. The units of the PDGF concentration

is ng/mm2.

For cross section 2, we observe that unlike the annular cross section 1, the concentration

of PDGF in the intima is not the same in all directions. At t = 0 year, there are regions

in the intima that have more PDGF concentration compared to other regions. With

time, these regions grow more compared to other regions. Thus, different parts of the

intima grow at different rates, and the lumen gets occluded at different rates from

different directions. At time t = 0, we observe that the thicker parts of the intima

have more PDGF concentration compared to the thinner regions. At later times, these

thicker regions grow more compared to the thinner ones. Therefore, given the PDGF
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distribution at time t = 0 year, one can predict which regions would grow more quickly

and the directions along which the intima will occlude the lumen.

From Fig. 5.15, it might seem that regions of cross section 2 that have higher PDGF

concentration grow compared to regions that have lower PDGF concentration, the

PDGF concentration grows over time, and the thicker parts of the intima have higher

PDGF concentration compared to thinner ones. Although these observations are true

for cross section 2, they do not hold for cross section 3. For cross section 3, the thicker

parts of the intima grows more quickly than the thinner parts and the lumen gets

occluded more from the direction where the intima is thicker to start with, i.e., at

t = 0 year. In cross section 3, the intima is very thick in one direction, the 6 o’clock

direction. We can consider cross section 3 to be that of a stage of advanced intimal

thickening. Except for regions near the 6 o’clock direction, the intima is more or less

uniformly thick. The below figure shows the evolution of the arterial wall of cross

section 3 with time.

(a) t = 0 year. (b) t = 1 year.
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(c) t = 1.5 years. (d) t = 2 years.

Figure 5.16: Snapshots of arterial wall remodelling for cross section 3 for four different

time points. The color of the intima represents the magnitude of the PDGF concentra-

tion. The magnitude are given in the color bar. The units of the PDGF concentration

is ng/mm2.

At time t = 0 year, we observe high PDGF concentration in the 6 o’clock direction.

From the observations we made in the case of cross section 2, it is natural to make the

inference that the PDGF concentration at this region will continue to grow with time.

However, such is not the case. The PDGF concentration at the 6 o’clock diminishes

with time. But even with a diminishing PDGF concentration, the region grows quicker

than the region at 12 o’clock position that develops a greater concentration of PDGF

over time but grows more slowly comparatively. Thus, it is true that thicker intimas

grow more quickly than the thinner ones, and this observation holds true for both cross

sections 2 and 3. One reason to account for the diminishing PDGF concentration is

that the center of flow moves away from the 6 o’clock region towards the 12 o’clock

region as the lumen deforms over time.

Thus, we can conclude that the thickness of the intima at time t = 0 year is a major

determinant of which regions grow more faster compared to other regions. Given the

thickness of the intima at time at time t = 0 year and the parameters for flow and the

material parameters, we can predict the time it takes for reaching a certain percentage

of stenosis, provided the parameters of blood flow do not change with time as the vessel
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deforms.

In some experimental setups, often the arterial specimens are depressurized before

sectioned and examined. This corresponds to lumen pressure of P = 0 kPa. We

simulate these depressurized cross sections 2 and 3 and show them in Fig. 5.17 below.

(a) Depressurized cross section 2 (b) Depressurized cross section 3

Figure 5.17: (a) Depressurized cross section 2 at t = 2 years with P = 0 kPa and

constant PDGF concentration in the intima. (b) Depressurized cross section 3 at t = 2

years with P = 0 kPa and constant PDGF concentration in the intima.

5.6 Metrics of remodelling

The plots in Section 5.4.3 require a further investigation into the amount of correla-

tion among the variables r(θ), τ(θ), C(θ), and κ(θ). In this section, we present the

Pearson correlation coefficients among the different variables. This helps us determine

the association between the different variables of interest. We observe an interesting

evolution of the correlation coefficients with time for different cross sections.

For cross section 1, there are analytic solutions relating the variables. There is a direct

relation between the radius, r, and shear stress, τ , given by τ(θ) =
Gr

2
where G is the

pressure gradient along the vessel. While τ and r are proportional, the variables r and

κ have an inverse relation between them given by κ =
1

r
. As we observed in Fig. 5.11,

there seems to be no obvious relation between C(θ) and τ(θ).
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For the non-annular cross sections 2 and 3, we see significant values of the correlation

coefficient. Below are the correlation coefficients for cross section 2 at different time

points.

Figure 5.18: Evolution of correlation coefficients among the variables r(θ), τ(θ), C(θ),

and κ(θ) for cross section 2 with time.

We now observe an inverse relation between r(θ) and τ(θ). This implies that as a

point on the endothelium moves away from the center of flow, the shear stress at that

point decreases for cross section 2 unlike for the case of cross section 1 where the shear

stress increases (decreases) as the points on the endothelium moves away (closer) to

the center of flow. The below figure represents the scatter plots and the regression lines

to demonstrate the strength of the correlation between r(θ) and τ(θ) for cross section

2.
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(a) t = 0 year. (b) t = 2 years.

Figure 5.19: Regression plots between r(θ) and τ(θ) for cross section 2. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.

Another interesting correlation is that between r(θ) and the PDGF concentration C(θ).

They are inversely related and the correlation coefficient tends to −1 as t → 2 years.

This also implies that as r(θ) increases, the PDGF concentration C(θ) decreases. So

as a point moves away from the center of flow, it experiences less concentration of

PDGF. In the below regression plots, we observe that at time t = 0 years, there is a

weak negative correlation between r(θ) and C(θ). However, as time increases, the two

variables become more negatively correlated, suggesting that the PDGF concentration

at a point on the endothelium increases (decreases) as the point moves closer to (away

from) the center of flow.
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(a) t = 0 year. (b) t = 2 years.

Figure 5.20: Regression plots between r(θ) and C(θ) for cross section 2. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.

In addition, for cross section 2, we observe a strong positive correlation between τ(θ)

and the PDGF concentration C(θ) with the correlation coefficient almost 1. Although

the flux of PDGF is related to the shear stress and not the PDGF concentration itself,

this correlation suggests that the PDGF concentration increases as the shear stress

increases. Since r(θ) has an inverse relation with τ(θ) as observed in Fig. 5.19, and

r(θ) has an inverse relation with C(θ) as observed in Fig. 5.20, we can explain the

strong positive correlation between τ(θ) and C(θ).

(a) t = 0 year. (b) t = 2 years.

Figure 5.21: Regression plots between τ(θ) and C(θ) for cross section 2. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.
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There exists a weak positive correlation between r(θ) and the curvature κ(θ) while the

variables τ(θ) and κ(θ) exhibit a weak inverse relation between them. The variables

C(θ) and κ(θ) also have an inverse relation between them. At time t = 0 years,

they have a weak negative correlation, but as time progresses, they tend to become

uncorrelated.

Figs. 5.19, 5.20, and 5.21 raise some very interesting questions in case of cross section

2, the investigation of which is beyond the scope of this research: can the concentration

of PDGF at a particular point in the intima and the magnitude of shear stress at the

endothelium be modeled as a function of the distance of the point from the center of

flow? Can the PDGF concentration at the endothelium be modeled as a function of

the shear stress?

The strong relations between r(θ) and τ(θ), r(θ) and C(θ), and τ(θ) and C(θ) are a

consequence of the geometry of cross section 2. We show next that the relations and

the correlation coefficients between the variables differ for cross section 3. Thus, an

interesting observation is how the correlation coefficients between variables in cross

section 2 change as we move on to cross section 3. The correlation coefficients for cross

section 3 over time are as follows:
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Figure 5.22: Evolution of correlation coefficients among the variables r(θ), τ(θ), C(θ),

and κ(θ) for cross section 3 with time.

There are some important observations we can make from the above figure. We observe

that r(θ) and τ(θ) are inversely related for the given time points with the correlation

coefficient close to −1. The regression plots for r(θ) and τ(θ) are shown in Fig. 5.23

below.
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(a) t = 0 year. (b) t = 2 years.

Figure 5.23: Regression plots between r(θ) and τ(θ) for cross section 3. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.

The correlation coefficient between r(θ) and C(θ) first increases and then decreases with

time. At time t = 0, we observe a strong negative correlation between the variables,

but as time increases, the variables exhibit a weak negative correlation.

(a) t = 0 year. (b) t = 2 years.

Figure 5.24: Regression plots between r(θ) and C(θ) for cross section 3. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.

The variables τ(θ) and C(θ) are directly related. The correlation coefficient decreases

and then increases. But the two variables maintain a direct relationship throughout

time.

87



(a) t = 0 year. (b) t = 2 years.

Figure 5.25: Regression plots between τ(θ) and C(θ) for cross section 3. CC denotes

Pearson’s correlation coefficient. The light blue region represents the 95% CI.

The variables r(θ) and κ(θ) exhibit a weak negative correlation and the correlation

coefficient stays roughly the same through time. This implies that the variables are

inversely related and the relation does not change with time. The variables τ(θ) and

κ(θ) exhibit a direct relation throughout time. On the other hand, the two variables,

C(θ) and κ(θ), are inversely related at t = 0 years but develops a direct relation at

t = 0.5 years.

An important takeaway is that the sign of the correlation coefficients are preserved for

later times for cross sections 2 and 3. Also, for cross sections 2 and 3, there is a negative

correlation between r(θ) and τ(θ). As the distance of a point on the endothelium moves

away from the center of flow, it experiences less shear stress, resulting in reduced flux of

PDGF. On the other hand, if a point moves closer to the center of flow, it experiences

high shear stress, resulting in greater flux of PDGF from the endothelium to the intima.

Another important observation is how the correlation coefficient between τ(θ) and C(θ)

varies when the geometry is changed. For cross section 2, r(θ) and C(θ) have a strong

negative correlation compared to cross section 3. For cross section 3, the two variables

seem to become uncorrelated as time increases. These observations raise two interesting

questions: first, what effect does a cross section geometry have on the strength of the
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correlation among the variables? Second, how does the strength of correlation change

as time increases? For the simulations presented in this thesis, we have considered

t = 2 years to be the final time. If we stretch time beyond 2 years, other interesting

correlations may emerge among the variables.
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CONCLUSIONS

In this thesis, we constructed a model for intimal thickening in which growth depends

on shear stress from a Poiseuille flow. The model illustrates how hemodynamics can

influence arterial morphology. The shear stress profile along the endothelium has a

strong negative correlation with the distance to the endothelium from the center of

flow. Also, the shape of the lumen tends to be polygonal with time. This thesis

also incorporates a new technique of using numerical conformal maps to compute the

fiber field in a general arterial cross section. With this technique, we get a smooth

distribution of fiber fields that can be used directly in the strain energy functional.

We modeled the PDGF flux across the endothelium as a function of shear stress. The

flux is a Hill function of the shear stress induced by the blood flow. This implies

that as shear stress increases the flux of PDGF saturates. The endothelial cells have

a maximum capacity to produce PDGF. As a result, as the shear stress increases,

the flux of PDGF saturates to a maximum value. To account for PDGF transport,

we solve a diffusion-degradation equation subject to the fact that the flux of PDGF

from the endothelium is upregulated by the shear stress induced by the Poiseuille flow

through the lumen. In addition to the PDGF concentration, the growth of the intima

and the deformation of the vessel wall is also governed by the mechanical properties of

each of the layers (intima, media, and adventitia). We take into account the different

mechanical properties of each of the layers in constructing the strain energy density

functions for each of the layers.

A PDGF-induced growth of the intima and deformation of a vessel cross section changes

the total potential energy of the system, which is represented by an energy functional

that involves strain energy density functions for each of the layers. We define the strain
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energy density functions for each of the layers using hyperelasticity and morphoelas-

ticity implemented through a finite element method. In order to find the optimal de-

formation, one needs to find an optimal displacement field. We find the displacement

field by minimizing the energy functional.

The shape of the lumen deforms according to the deformation of the arterial wall.

During the initial expansion of the arterial wall, the lumen dilates whereas in the

remodeling phase, the lumen shrinks. Since the blood flows through the lumen and the

lumen shape changes with time, the solution to the Poiseuille flow equation also changes

with time. To numerically simulate the blood flow through the changing lumen using

finite element methods, we need a mesh on the lumen. So, we have two meshes which

are used differently: a mesh for the arterial wall and a mesh for the lumen. They share

the endothelium as a common boundary. We introduce a strain energy density function

for the lumen, assuming the lumen to be filled with highly compressible material. We

then minimize the energy functional, subject to a Dirichlet boundary condition that the

displacement field is continuous across the endothelium. The resulting displacement

field gives rise to a lumen mesh that remains regular over time.

The collagen fibers associated with each of the layers play an important role in dictating

the stiffness and deformation of each of the layers. While there are techniques like

interpolation and probability distributions that are used to model the distribution of

fibers, we implemented a new technique of modeling the fiber fields using numerical

conformal maps. Using this technique, we map each of the layers to an annulus, which

has outer radius 1 and inner radius ρ (conformal modulus). For each point in the

physical cross section, we apply a forward conformal map to find a corresponding

point on the annulus. We then find the unit normal vector at the mapped point. Using

an inverse conformal map, we map the unit normal vector back to a vector at the point

on the physical cross section. Using this technique for each of the layers, we created a

smoothly varying fiber fields in each of the layers. The fibers have different inclination

angles for each of the layers. At the IEL (interface between the intima and media), we
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assigned the inclination angle of the fibers to that of the intima while at the media–

adventitia interface, we defined the angle of inclination to be that of the adventitia.

The reasons for choosing a conformal map is that it preserves angles and that the fiber

field in an annulus is easy to determine since the fibers are circumferential; they are

the unit normal vectors at each of the points on the annulus. Since conformal maps

preserve angles, the fibers at the boundaries of the layers stay tangential and do not

cross from one layer to the next.

We also calculate the correlations among the different variables (r(θ), τ(θ), C(θ), and

κ(θ) with all variables measured from the center of flow) for cross sections 2 and 3. For

cross sections 2 and 3, we observe positive correlations between τ(θ) and C(θ), r(θ) and

κ(θ). On the other hand, we observe an inverse relationship between C(θ) and κ(θ),

r(θ) and C(θ), τ(θ) and κ(θ), r(θ) and τ(θ). These observations suggest that for cross

sections 2 and 3, as the shear stress increases (decreases), the PDGF concentration

along the endothelium increases (decreases). Also, as the distance to the endothe-

lium from the center of flow increases (decreases), the curvature of the endothelium

increases (decreases). On the other hand, as the curvature of the endothelium increases

(decreases), the PDGF concentration along the endothelium decreases (increases); as

the distance to the endothelium from the center of flow increases (decreases), the

PDGF concentration along the endothelium decreases (increases); as the shear stress

on the endothelium increases (decreases), the curvature of the endothelium decreases

(increases); and as the distance to the endothelium from the center of flow increases

(decreases), the shear stress decreases (increases). Since all the variables are measured

from the center of flow or are parameterized with respect to the coordinates of the

center of flow, the above observations strongly suggest that the center of flow and its

distance to the endothelium is a crucial factor in determining the magnitude of the

variables for cross sections 2 and 3. In order to find the center of flow, one needs to

find the solution of the Poiseuille flow numerically, thus introducing error in the center

of flow. Thus, it is necessary to regularize the variables by fitting splines to them.
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Finally, we implement spline interpolation to reduce noise in data (regularization).

The framework of the mathematical formulations and the simulations involves a finite

element method. As a result, there are numerical errors introduced in the calculations.

These errors affect the accuracy in the calculation of the variables r(θ), τ(θ), C(θ).

To reduce the noise, we fit a spline to each of the variables. To calculate κ(θ), we

differentiate the spline fit through r(θ). This reduces the noise in both r(θ) and κ(θ).

Since finding κ(θ) involves numerical differentiation of r(θ), if there is noise in r(θ),

then it gets amplified when differentiated, introducing noise in κ(θ).

However, there are 5 limitations of this study. First, the blood flow is highly idealized.

In reality, the blood flow through the lumen is pulsatile. In our work, we have assumed

that as the vessel deforms with time, the pressure gradient across the vessel remains

constant, the viscosity of blood remains constant with time, and the blood pressure is

constant with time. These simplifying conditions allow a focused investigation of how

intimal thickening is promoted by shear stress. The second limitation of our study is

that the collagen fibers in the three layers have a spatially smooth distribution. In

reality, the orientation is random and can be modeled using probability distributions.

As a result of this limitation, the results from our study will deviate from studies that

incorporate probabilistic models for the fiber orientations. Third, we haven’t considered

the production of PDGF by the smooth muscle cells (SMCs) in the intima or media

and we are also neglecting the flux of SMCs from the media to the intima through

the internal elastic lamina towards regions of higher PDGF concentration. Fourth, we

assumed there is no growth in the media. However, the media does experience growth

and becomes thicker with time. Finally, in reality, a healthy intima starts out as a very

thin layer. To simulate an initially thin intima, we have to resolve it with many small

elements. This increases the time complexity of the algorithm. The intima in all the

cross sections of our simulation start off much thicker than a typical healthy intima.

In spite of the above limitations of our model, it provides a clear insight into the

dynamics of intimal growth due to hemodynamical shear stresses and highlights the
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intricate relation between the cross section geometry and intimal growth. Growth and

hemodynamics have been studied separately in a lot of detail but there are none (to

our knowledge) that combines the two. It introduces a new approach to compute fiber

fields in a 2D vessel cross section using numerical conformal maps. In addition, it

introduces a new method of meshing the lumen to compute and simulate a Poiseuille

blood flow through an evolving lumen geometry.

An evolving lumen can be mapped to an annular disk with the help of numerical

conformal maps. This raises the possibility of solving the Poiseuille flow in a disk and

then with the help of the inverse conformal map, calculating the Poiseuille flow on

the evolving lumen geometry. However, the construction of the conformal map can be

unstable in some cases because of the crowding phenomenon.

This thesis raises several interesting aspects that warrant further investigations. We

can enrich our model further by considering a more realistic blood flow. Inclusion of

more interesting transport processes and signalling factors in the arterial wall will help

us create a more realistic model. Incorporating the dynamics of lipid trafficking into our

model can also provide some interesting insights on plaque progression. Also coupling

hemodynamics with plaque progression can provide some answer to some interesting

questions: What is the role of geometry in determining the rate of atherosclerosis?

How does hemodynamics affect the progression of plaques? What is the effect of

hemodynamics on atherosclerosis at vessel arches and bifurcations? What are the

correlations among the variables r(θ), τ(θ), C(θ), and κ(θ) for different cross section

geometries? Do the results from this thesis apply to cross section geometries (apart

from bifurcations and arches) taken from medical imaging data?

This thesis can be considered as a stepping stone to further investigations into the

relation between the local geometry of the endothelium and intimal growth; and the

interplay between cross section geometry, hemodynamics, and atherosclerosis.
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GitHub Link: https://github.com/avishmj/intimal-thickening
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[51] Y. Nakatsukasa, O. Séte, and L.N. Trefethen. The AAA algorithm for rational
approximation. SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018.

[52] J.A. Niestrawska, A. Pukaluk, A.R. Babu, and G.A. Holzapfel. Differences in
collagen fiber diameter and waviness between healthy and aneurysmal abdominal
aortas. Microscopy and Microanalysis, pages 1–15, 2022.

[53] S. Numata, K. Itatani, K. Kanda, K. Doi, S. Yamazaki, K. Morimoto, K. Manabe,
K. Ikemoto, and H. Yaku. Blood flow analysis of the aortic arch using computa-
tional fluid dynamics. European Journal of Cardio-Thoracic Surgery, 49(6):1578–
1585, 2016.

[54] M.S. Olufsen. Structured tree outflow condition for blood flow in larger sys-
temic arteries. American Journal of Physiology-Heart and Circulatory Physiology,
276(1):H257–H268, 1999.

[55] M.S. Olufsen and A. Nadim. - On deriving lumped models for blood flow and
pressure in the systemic arteries. Elsevier Science Ltd, Oxford, 2003.

[56] M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, and J. Larsen.
Numerical simulation and experimental validation of blood flow in arteries with
structured-tree outflow conditions. Annals of Biomedical Engineering, 28:1281–
1299, 2000.

[57] F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula. Clinical classification
of plaque morphology in coronary disease. Nature Reviews Cardiology, 11(7):379–
389, 2014.

[58] T.J. Pence and K. Gou. On compressible versions of the incompressible neo-
Hookean material. Mathematics and Mechanics of Solids, 20(2):157–182, 2015.

[59] G. Plank, J.D. Bayer, R.C. Blake, and N.A. Trayanova. A novel rule-based algo-
rithm for assigning myocardial fiber orientation to computational heart models.
Annals of Biomedical Engineering, 40:2243–2254, 2012.

[60] A.R. Pries, T.W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in
the microvasculature. Cardiovascular research, 32(4):654–667, 1996.

[61] A. Procopio, S.D. Rosa, C. Covello, A. Merola, J. Sabatino, A.D. Luca, C. Indolf,
F.Amato, and C. Cosentino. Mathematical model of the release of the cTnT and
CK-MB cardiac biomarkers in patients with acute myocardial infarction. 18th
European Control Conference (ECC), 2019.

[62] A. Quarteroni. What mathematics can do for the simulation of blood circulation.
MOX Report, 2006.

100



[63] M.T. Quinn, S. Parthasarathy, and D. Steinberg. Lysophosphatidylcholine: a
chemotactic factor for human monocytes and its potential role in atherogenesis.
Proceedings of the National Academy of Sciences, 85(8):2805–2809, 1988.

[64] M. Rafieian-Kopaei, M. Setorki, M. Doudi, A. Baradaran, and H. Nasri.
Atherosclerosis: process, indicators, risk factors and new hopes. International
journal of preventive medicine, 5(8):927, 2014.

[65] M.A. Reidy, J. Fingerle, and V. Lindner. Factors controlling the development of
arterial lesions after injury. Circulation, 86(6 Suppl):III43–6, 1992.

[66] R. Ross. Cell biology of atherosclerosis. Annual review of physiology, 57(1):791–
804, 1995.

[67] K. Sakakura, M. Nakano, F. Otsuka, E. Ladich, F.D. Kolodgie, and R. Virmani.
Pathophysiology of atherosclerosis plaque progression. Heart, Lung and Circula-
tion, 22:399–411, 2013.

[68] S.G. Sassani, S. Tsangaris, and D.P. Sokolis. Layer- and region-specific material
characterization of ascending thoracic aortic aneurysms by microstructure-based
models. Journal of Biomechanics, 48:3757–3765, 2015.

[69] A.J. Schriefl, A. J. Reinisch, S. Sankaran, D.M. Pierce, and G.A. Holzapfel. Quan-
titative assessment of collagen fibre orientations from two-dimensional images of
soft biological tissues. J. R. Soc. Interface, 9:3081–3093, 2012.

[70] S.M. Schwartz, D. deBlois, and E.R.M. O’Brien. The intima: soil for atheroscle-
rosis and restenosis. Circulation research, 77(3):445–465, 1995.

[71] R. Shankar, C.A. de la Motte, E.J. Poptic, and P.E. DiCorleto. Thrombin receptor-
activating peptides differentially stimulate platelet-derived growth factor produc-
tion, monocytic cell adhesion, and E-selectin expression in human umbilical vein
endothelial cells. The Journal of Biological Chemistry, 269(19):13936–13941, 1994.

[72] C. Simonetto, M. Heier, A. Peters, J.A. Kaiser, and S. Rospleszcz. From
atherosclerosis to myocardial infarction: A process-oriented model investigating
the role of risk factors. American Journal of Epidemiology, 00:1–10, 2022.

[73] C. Simonetto, S. Rospleszcz, M. Heier, C. Meisinger, A. Peters, and J. C. Kaiser.
Simulating the dynamics of atherosclerosis to the incidence of myocardial infarc-
tion, applied to the KORA population. Statistics in Medicine, 40:3299–3312, 2021.

[74] P.A. Stonebridge, S.A. Suttie, R. Ross, and J. Dick. Spiral laminar flow: a survey
of a three-dimensional arterial flow pattern in a group of volunteers. European
Journal of Vascular and Endovascular Surgery, 52(5):674–680, 2016.

[75] E.K. Theofilogiannakos, G.K. Theofilogiannakos, A. Anogeianaki, P.G. Danias,
H. Zairi, T. Zaraboukas, V. Stergiou-Michailidou, K. Kallaras, and G. Kallaras.
A fiber orientation model of the human heart using classical histological methods,

101



magnetic resonance imaging and interpolation techniques. Computers in Cardiol-
ogy, 35:307–310, 2008.

[76] F.B. Tian, L. Zhu, P.W. Fok, and X.Y. Lu. Simulation of a pulsatile non-
Newtonian flow past a stenosed 2D artery with atherosclerosis. Computers in
Biology and Medicine, 43(9):1098–1113, 2013.

[77] L. N. Trefethen. Numerical conformal mapping with rational functions. Compu-
tational Methods and Function Theory, 20:369–387, 2020.

[78] O.F. Voropaeva, C.A. Tsgoev, and Y.L. Shokin. Numerical simulation of the
inflammatory phase of myocardial infarction. Journal of Applied Mechanics and
Technical Physics, 62:441–450, 2021.

[79] J. Wong and E. Kuhl. Generating fiber orientation maps in human heart
models using poisson interpolation. Comput Methods Biomech Biomed Engin,
17:1217–1226, 2014.

[80] C.K. Zarins, M.A. Zatina, D.P. Giddens, D.N. Ku, and S. Glagov. Shear stress
regulation of artery lumen diameter in experimental atherogenesis. Journal of
Vascular Surgery, 5:413–420, 1987.

[81] M. Zaromytidou, G. Siasos, A.U. Coskun, M. Lucier, A.P. Antoniadis, M.I. Pa-
pafaklis, K.C. Koskinas, I. Andreou, C.L. Feldman, and P.H. Stone. Intravascular
hemodynamics and coronary artery disease: New insights and clinical implications.
Hellenic Journal of Cardiology, 57(6):389–400, 2016.

102



Appendix A

PERMISSIONS

Chapter 3 of this thesis is taken from the publication [47] by Avishek Mukherjee and

Pak-Wing Fok, with Avishek Mukherjee being the first author. The article is an

open access article published by AIMS Press in the journal Mathematical Biosciences

and Engineering. The link to rights for the journal is https://www.aimspress.

com/index/news/solo-detail/about where it is mentioned “All articles published

by AIMS Press are Open Access under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0). Under this license, authors re-

tain ownership of the copyright for their content, and anyone can copy, distribute, or

reuse these articles as long as the author and original source are properly cited”.
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