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Unification of step bunching phenomena on vicinal surfaces
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We unify step bunching (SB) instabilities occurring under various conditions on crystal surfaces below
roughening. We show that when attachment-detachment of atoms at step edges is the rate-limiting process, the
SB of interacting, concentric circular steps is equivalent to the commonly observed SB of interacting straight

steps under deposition, desorption, or drift. We derive a continuum Lagrangian partial differential equation,
which is used to study the onset of instabilities for circular steps. These findings place on a common ground SB
instabilities from numerical simulations for circular steps and experimental observations of straight steps.
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Recent advances in the fabrication of small devices such
as quantum dots have motivated theoretical research into the
fundamental properties of surfaces at the nanoscale. Below
the roughening transition temperature,' the evolution of crys-
tal surfaces is governed by the motion of steps.? This motion
is important in understanding phenomena such as pattern
formation® and the self-assembly of nanostructures.*

One of the most commonly studied surface phenomena is
step bunching (SB), where steps cluster together tightly into
widely separated bunches.’ This instability has been ob-
served experimentally on many different systems, e.g., see
Refs. 6-8 Most theoretical studies of SB have focused on the
idealized situation with straight steps.>*!° However, as sur-
face features become smaller, the step curvature should play
an increasingly important role.!! Therefore, a realistic model
of step bunching must include both the effects of step curva-
ture and step interactions.’

Experimentally, the most common way to induce SB is to
heat the surface using a direct current.'> The resulting insta-
bility in straight steps has been understood on the basis of an
asymmetry in the adatom density caused by a preferential
drift.'> However, the equivalent phenomenon in circular
steps has received much less attention. Experiments for cir-
cular steps are not uncommon'#!3 and yet, very few theories
currently exist that predict the onset of SB in circular steps
(see Ref. 16, however, for a quasi-steady-state analysis).

In this Brief Report, we discuss how curvature differences
from one step to another can also induce a drift and, thus,
give rise to SB. The main result is the derivation of a reduced
partial differential equation (PDE), Eq. (12) below, which
captures this effect and is able to predict the onset of SB
instabilities for relaxing circular steps. We therefore unify SB
phenomena in straight and circular steps by showing that
they have a common physical and mathematical basis. In
particular, our approach demonstrates that the effect of step
line tension on SB is equivalent to that of a drift or of de-
sorption and/or material deposition in the presence of a dif-
ference in the kinetic rates at step edges. This equivalence is
shown by treating the step index as a continuum variable.!”
In the resulting PDEs for the step positions, the step line
tension and the physical effects described above all contrib-
ute to a destabilizing, “backward” diffusion term. Our ap-
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proach, therefore, differs from Ref. 18, which categorized a
broad range of SB instabilities according to their universality
class.

We first review briefly SB instabilities of straight
steps'®2!; see Table 1. We stress that all the results in this
table are already well established. Our intentions here are (i)
to derive continuum equations for straight-step equations in
the Lagrangian framework so that the analogy between an
externally induced drift in straight steps and curvature-
induced drift in circular steps is made clear; and (ii) study the
step bunching of circular steps*? on the basis of the PDE in
Lagrangian coordinates.

Under the quasi-steady-state approximation,® the one-
dimensional adatom density, c¢;, on the ith terrace satisfies
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where D is the terrace diffusivity, v, is the down-step drift
velocity, R is the deposition flux, and 7 is the desorption
time. The adatom current is Ji(x)=—D%+voc,». We then
solve for ¢;(x) by imposing boundary conditions for adatom
attachment-detachment at step edges:

= Jils, =kl - CTY), (2)

TABLE I. A summary of some known conditions under which
SB occurs in numerical simulations; ES, Ehrlich-Schwoebel barrier.
A cross (check) indicates absence (presence) of the corresponding
physical effect. The conditions most relevant to experiments (Ref.
12) are those in (Refs. 19 and 21).

ES Curvature Drift Desorption Deposition Reference
X X J J J 19
J X X X J 20
X X N N X 21
X / X X X 22
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Ji|xl-+1 = k—( Ci|xl~+l - C?El) (3)

Here, k, and k_ are rate coefficients for attachment-
detachment from the lower and upper terraces, and C;" is the
equilibrium adatom density at the ith step, to be given below.
If k, > k_, then we have a “positive” Ehrlich-Schwoebel (ES)
barrier,?>?* whereas k, <k_ results in a “negative” ES bar-
rier. The propensity of steps to accept adatoms is described
by the step chemical potential, w;. We write C{=cqet/*s"
~c0(1 +ﬁ}), where kgT is the Boltzmann energy, c is the
density at an isolated step, and'

e [
kBT_g|:(xi+1_xi> - Xi—Xi-1 . )

In Eq. (4), L is the typical terrace width and g is the (dimen-
sionless) strength of step interactions. Once the adatom den-
sity ¢;(x) is known, the step velocity is

L ) s
dt a
where () is the atomic volume and « is the step height. Equa-
tion (5) along with Egs. (1)—(4) yields a system of coupled
equations for the step positions.

Next, we express the continuum limit of Eq. (5) through
Lagrangian coordinates. We thus replace the discrete x,(¢) by
a smooth function x(s,7). Specifically, x,(f)=x(s,), where s
=id and << 1; hence, s becomes the dimensionless, continu-
ous version of the discrete index i. Then, in Eq. (5), terms
such as x;,;(¢) are replaced by their Taylor expansions, e.g.,
x(s+8,1)=x(s,1)+ x,(s,t)+..., where the subscript s denotes
partial derivative. This continuum approximation is valid in
regions where significant changes in x,,; —x; happen over a
large, O(5 1), number of steps. In the case of step bunching,
the approximation is valid inside each bunch, but breaks
down across terraces that connect individual bunches, as dis-
cussed below. The merits of using a Lagrangian continuum
approach are as follows: (i) large single terraces, which in-
validate the continuum, conveniently correspond to very thin
regions in the Lagrangian coordinate s; and (ii) the derivation
of (leading-order) continuum equations can be carried out
via Taylor expansions and, hence, be easily automated.

We assume that terrace diffusion is much faster than
attachment-detachment at step edges; that is, the step kinetics
is attachment-detachment limited (ADL). Therefore, the ratio
of the typical terrace width, L, to the diffusion length \'E- is
small; we take & to be precisely this ratio. The resulting
Lagrangian equations of motion are nonlinear. If we linearize
around a solution corresponding to equally spaced steps, then
we obtain’!

U= Alus - AZMSS + A3usss - A4ussm' (6)

Here, u(s,1)=x(s+8,t)—x(s,?) is the terrace width, and the
coefficients A; are of leading order in & and depend on the
physical effects included. A nonlinear equation to describe
step bunching has been derived in Ref. 25. In obtaining Eq.
(6), we have chosen a time scale for the step motion equal to

Q‘Zsy \/g. The stability of the terrace widths, as predicted by a

PHYSICAL REVIEW B 76, 033408 (2007)

linear analysis, depends only on the signs of the coefficients
A, and Ay; neither A| nor As affects it. More precisely, the
amplitude of modes with wave number k grows as

AR-Ak) The coefficients A, and A, are given by

1(R k,—k k.k
A2=—5[3g+—<—T—1)(;>—M(;>},
2\ ¢ ki+k.) D \k,+k_

(7
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Equation (6) along with Egs. (7) and (8) confirms the first
three results in Table 1. For future reference, we note that a
positive drift (vy>0) contributes as a destabilizing backward
diffusion term in Eq. (6).

We now turn our attention to the main focus of this Brief
Report: the axisymmetric case, when the structure consists of
a large number of concentric, circular descending steps.'*?¢
The relaxation of these structures is simulated in Ref. 22; see
Table I. In this case, SB occurs even in the absence of depo-
sition, desorption, drift, and ES barriers, because of the com-
petition between step curvature and interactions. To our
knowledge, this phenomenon has not been observed experi-
mentally. However, using the continuum Lagrangian ap-
proach, we show that this curvature-driven SB can be ex-
plained on the basis of an asymmetry, in the same fashion as
the experimentally observable instabilities for straight
steps.!?

The derivation of the equations of motion for circular
steps is similar to that of straight steps. The starting point is
Eq. (5) with x; replaced by r;, the radius of the ith step, and
J(r)=a;/r, where r is the polar distance and «; depends on
Tis Tie1» and 7,577 Instead of Eq. (4), we use?’?8

el
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In the first term of Eq. (9), g;a is the step line tension
(energy/length), which has no counterpart in Eq. (4); this
term causes the first step (r=r;) to shrink. The second term
in Eq. (9) corresponds to step interactions. In Eq. (10), g5 is
: : . 5— 283(a)2
the step interaction free energy; we define g=73 . ( L) as the
relative strength of interactions to line tension, where L is the
typical terrace width.

To take the continuum Lagrangian limit of the step equa-
tions, we first define the dimensionless step radii p;()
=r,(1)/L and expand p;,;(t)=p(s+ 8,1)=p(s,t)+ Sp,+.... The
resulting PDE for p(s,?) is
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where g=D/ (kL) and 'y:(z—i;)(%)(%) are dimensionless
material parameters, k is the attachment-detachment rate, and
U is a typical step velocity. Equation (11) in Eulerian coor-
dinates was given in Ref. 27. Note that, when g—0 and ¢
> O(p,), the right side of Eq. (11) reduces to a destabilizing,
backward diffusionlike term; this term causes SB in agree-
ment with Ref. 22. The stability analysis of Eq. (11) is com-
plicated by the fact that equally spaced steps do not form a
solution.

Hence, while retaining the main effects of curvature and
interactions, we make four simplifications. The resulting
simplified PDE—see Eq. (12) below—contains the leading
nonlinearity responsible for the onset of wide terraces sepa-
rating bunches. First, we assume that the kinetics is ADL,
ps<<2q. Second, we take v=3g/ & < 1. Third, we study the
stability of a set of consecutive steps that have approximately
the same radius, p,. Fourth, we focus on the transition re-
gime where the step line tension balances step interactions.
Thus, we seek a solution to Eq. (11) in the form p=p,
+vp,(s,0)+0(v""?), where py=0(1) is a constant and p,
=0(1). With u=dp,/ds, we have

)
()5 o]
0 AR

Next, we discuss Eq. (12). The term —u,,/p; represents the
step line tension and corresponds to the term —A,u  in Eq.
(6). The term —(u,/u*),,, expresses the step interactions, is
stabilizing, and corresponds to —A,u,,,. Hence, by compari-
son with the straight-step case, we associate step curvature
with the other effects commonly known to cause SB. More
precisely, changes in the step curvature cause variations with
i in the step chemical potential w; through Eq. (9). These
variations always induce nonzero currents and, thus, cause an
asymmetry in the adatom density, amounting to a drift. The
successive time-monotone collapse of the innermost step
means that the relaxation is effectively driven by the expand-
ing facet,'* which ultimately acts as the current source for all
other steps.

Figure 1 shows the result of integrating Eq. (12) numeri-
cally; note the development of a SB instability as a growing
spike in u, i.e., an expanding terrace. Linearizing Eq. (12)
around u=constant. yields a special case of Eq. (6); hence,
we have unified all the step bunching phenomena in Table I.
However, keeping the nonlinearity in Eq. (12) is essential for
the localized nature of the instability shown in Fig. 1. As the
spike forms, the value of u is lowered nearby (u should be
conserved), and this amplifies the (nonlinear) stabilizing
term. We expect that a similar nonlinear effect plays an im-
portant role in the case with straight steps.

To further validate the continuum Lagrangian approach,
we use Eq. (11) with ADL kinetics to predict two scaling
laws for sufficiently small g. From step simulations, for ex-
ample, Ref. 26 or Fig. 5f in Ref. 22, we observe that steps
within bunches move very slowly. Thus, the adatom current
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FIG. 1. Numerical solution of Eq. (12) with periodic boundary
conditions in s. By using scaled dependent and independent vari-
ables, one can take py=1 and %Yzl without loss of generality. The
initial condition is u(s,0)=0.8+0.6 sin s.

inside the bunch is nearly a constant, K.?° Because bunches
behave like individual steps,?? the radius of the first bunch
decreases due to an effective line tension, independently of g
as g— 0; therefore, the adatom current must also be indepen-
dent of g to leading order. We infer that K=0O(1) when g
< 1. Hence we set the term in the curly brackets of Eq. (11)
equal to a constant proportional to K. By approximately solv-
ing the resulting differential equation for ADL kinetics, we
obtain p,=0(g"3N=?3), where N is the number of steps in
the bunch. Thus, we obtain two scaling predictions. First, the
bunch width scales as g~“3, in agreement with simulation
data; see Fig. 2. The same scaling is given in Refs. 10 and
21, but for straight steps. Second, for fixed g, the typical
terrace width inside a bunch scales as N~3* in agreement
with the straight-step cases.!-2129

So far, we have only considered SB with ADL kinetics.
Next, we study the more physically relevant case with
“mixed” kinetics, which incorporates the joint effect of
attachment-detachment and terrace diffusion; the latter acts
as an additional stabilizing influence on the step motion. As
in the ADL case, SB occurs if step line tension dominates,

<
g 05
=
S
c 0
>
a
g o

-16 -14 -12 -10
log(9)
FIG. 2. Log-log plot of step bunch width vs step interaction

strength g under ADL kinetics. Symbols represent simulation data
at a fixed time #, and the solid line is our scaling prediction.
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but now this instability can be suppressed due to terrace dif-
fusion. Diffusion becomes more important if either the ter-
race diffusivity decreases or the terrace width increases suf-
ficiently: both of these conditions are expressed by the local
condition ¢/p,<<1. Figure 3(a) shows the evolution of the
terrace widths over time, obtained by integrating the discrete
circular-step equations numerically with g=1. The initial
condition used is p,=n+sin(0.1n), which amounts to dp/ds
=1+0.1 cos(0.1s). Hence, g/p,~ 1 initially and we see that
SB forms even when diffusion and attachment-detachment
are comparable. The development of a spike in the terrace
width is similar to the behavior in ADL kinetics; compare
Fig. 3(a) with Fig. 1.

The transition to diffusion-limited kinetics can be seen
through Eq. (11). In the limit ¢/ p,— 0, the line tension term
reduces from Il-u;—i %)S t ﬁa%(,l))’ the destabilizing effect of
backward diffusion is removed, and, in fact, step bunches
decay over time due to step repulsions. The initial condition
used in Fig. 3(b) is identical to that in Fig. 3(a), but now ¢
=0.1. In contrast to Fig. 3(a), the bunches now do not
steepen and, instead, small perturbations to a constant p, pro-
file decay exponentially with a rate constant «g in the limit
g/ p;— 0.26 The theoretical prediction of diffusion-limited SB
decay made by Eq. (11) along with the simulation result in
Fig. 3(b) is the circular-step analog of the bunch decay ob-
served experimentally in Ref. 6.

In conclusion, we have unified various conditions under
which SB occurs. In particular, SB arising from drift and
curvature effects can be explained using the same underlying
principles. We believe that the continuum Lagrangian ap-
proach used here opens up promising research directions. For
example, although we unified the SB instabilities in Table I,
the instabilities arising from long-range® and attractive’ in-
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FIG. 3. SB formation and decay for (a) ¢/ps~1 and (b) ¢/p;
~(.1. In both cases, §=10"3 and an initial condition of p,=n
+sin(0.1n) was used.

teractions were not discussed. Also, the derivation of condi-
tions that connect Lagrangian solutions inside adjacent
bunches across wide terraces is work in progress.
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