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In this paper, we investigate an axisymmetric model of intimal thickening using hyperelasticity theory.
Our model describes growth of the arterial intima due to cell proliferation which in turn is driven by
the release of a cytokine such as Platelet-Derived Growth Factor (PDGF). With the growth rate tied to
both local stress and the local concentration of PDGF, we derive a quadruple free boundary problem with
different regions of the vessel wall characterized by different homeostatic stress. We compare our model
predictions to rabbit and rodent models of atherosclerosis and find that in order to achieve the growth
rates reported in the experiments, growth must be mainly cytokine-induced rather than stress-induced.
Our model is also able to reproduce Glagov remodeling where as a vessel becomes more diseased, the
lumen expands before rapidly contracting.
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1. Introduction

Intimal thickening (IT) is a common condition in humans that occurs naturally as a person ages (Am-
inbakhsh and Mancini, 1999). A healthy blood vessel wall consists of three main layers, of which the
innermost is the intima. The intima also includes the endothelium, a single layer of cells that lines the
interior of all blood vessels. The surrounding media is composed mainly of smooth muscle cells. The
outermost adventitia is composed of connective tissue, containing elastic and collagenous fibers.

IT is distinguished from atherosclerosis since its associated lesions are less inflamed, with macrophages
and angiogenic factors notably absent. Nevertheless, IT is related to atherosclerosis because atheroscle-
rotic lesions are thought to arise from thickened intimal cell masses (Kim et al., 1985). In other words,
a thickened intima is a precursor to atherosclerosis.

Because of the importance of IT in human atherosclerosis, studies such as Clowes et al. (1983),
Stadius et al. (1992) and Jackson et al. (1993) have tried to reproduce similar conditions in animals. One
common way to do this is by damaging the arterial endothelium using a balloon catheter. The result is
rapid onset of IT, typically occuring over a few months or less. Thickening of the intima is also common
after angioplasty operations in humans with accelerated intimal thickening and restenosis occurring
in about 30 - 40 % of angioplasty procedures (Hanke et al., 1990). Finally, IT is also manifested
in Graft Vascular Disease (GVD), one of the most important and common side-effects of solid organ
transplants (Mitchell, 2009). GVD probably arises from general immunologic insult, associated with
circulating lymphocytes. Common to all these manifestiations of IT is some kind of injury localized
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at, or originating from, the endothelium and subsequent release of cytokines. Injury to the endothelium
promotes smooth muscle cell migration from the media, their proliferation in the intima and accelerated
intimal thickening. Our goal in this paper is to unify these examples of intimal thickening through a
common mathematical model.

Persistent histological changes in the vessel wall are known collectively as remodeling. Released
hormones and growth factors are important for controlling vessel wall structure. For example, an-
giotensin produced by the liver causes vasoconstriction and nitric oxide is a potent vasodilator. Gener-
ally, remodeling may or may not be accompanied by an increase in mass but in this paper we use the
word to refer to changes in the shape of a vessel that are caused by growth or resorption. For example,
the vessels of patients with essential hypertension (Mulvaney, 2002) have encroached lumens: the ves-
sels exhibit inward remodeling. Growth can also cause an outward expansion, or outward remodeling,
of the vessel wall. This type of vessel change has been observed in the cerebral veins of pregnant rats
(van der Wijk et al., 2013). During intimal thickening, both inward and outward remodeling can be ob-
served (Pasterkamp et al., 1995; Glagov et al., 1987). With our model, we are able to study conditions
under which inward and outward remodeling occur and control the spatial distribution of cytokines in
the intima to see what effect they have on remodeling.

Broadly, mathematical models for atherosclerosis and its precursors are concerned with both geo-
metric and histological changes to the artery wall. The models can be divided into two types. First,
there are studies that attempt to predict properties or constituents of the artery that change in time. For
example, Friedman (1989) included smooth muscle cell migration, proliferation, metabolism and other
effects to predict the thickening of the intima under shear stress. Hao and Friedman (2014) treated the
intima as a porous medium which is coupled to a large system of reaction-diffusion equations for cell
and chemical species. They simulated the development of plaque over time by considering a growing
(general shaped) domain and created a risk map based on plaque weight, LDL and HDL plasma levels.
Ibragimov et al. (2005) and Fok (2011) also used reaction-diffusion PDE models to predict cell and lipid
concentrations within a thickened intima, but on a fixed simulation domain. Other researchers such as
Ougrinovskaia et al. (2010) treated the buildup of lipid as a dynamical system and studied the steady
states using bifurcation theory. Notably absent in these time-evolution models is the prediction of stress
and strain profiles due to changes in plaque geometry and/or composition.

Plaques have also been studied from a mechanical perspective by applying finite element analysis to
realistic geometries. Bluestein et al. (2008) included fluid interactions to solve for the stress distribution
in an eccentric arterial stenosis and to study the effect of microcalcifications on plaque vulnerability.
Chau et al. (2004) computed stress and strain distributions based on a geometry obtained from optical
coherence tomography and others including Cheng et al. (1993) and Huang et al. (2001) compared the
stress distribution in ruptured and stable atherosclerotic lesions to study the effect of calcification on the
mechanical stability of plaque. Notably absent in these mechanical models is dynamics: these models
cannot predict how plaque geometry or composition evolve over time.

In this paper we propose a model for intimal hyperplasia that describes changes in intima thickness
and stress/strain distributions over time, due to growth. It combines the most important aspects of both
types of model mentioned above and we believe it is the first model of its kind that describes both
changes in stress and cytokine over time. Thus, it is able to illustrate the complex interplay between
cytokine-induced growth, stress-induced growth and the spatial distribution of cytokine. The growth
process and the cytokine distribution are described by scalar parameters in our model. By comparing
the predictions with intima measurements of rabbits and rodents, we find their optimal values using
Bayesian inference and Markov Chain Monte Carlo. We find that growth must be driven by cytokine,
rather than be stress-induced. Also, in order to reproduce the rapid growth observed in the experiments,
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FIG. 1. Geometry in the (a) reference, unstressed configuration when t < 0, (b) the pressurized configuration at t = 0 and (c) the
grown pressurized configuration for t > 0. When t, A, B, C, D, a, b, c and d have the hat accent, they are considered dimensional.
Otherwise, they are dimensionless.

we predict that the distribution of cytokine must be approximately uniform throughout the intima.

2. Governing Equations

A multiplicative framework to model volumetric growth has been widely used to describe the growth
of soft tissue (Ben Amar et al., 2011; Goriely and Ben Amar, 2007; Ambrosi and Mollica, 2002, 2004;
Lubarda and Hoger, 2002; Garikipati et al., 2004; Taber and Humphrey, 2001). In our model, all do-
mains are assumed to be axisymmetric. All layers of the vessel wall are assumed to be concentric annuli
and remain so for all time t̂; see Fig. 1.

Within our framework, the initial configuration is assumed to be stress-free and growth is defined as
a change in volume of an unstressed elastic material. At time t̂ = 0, an internal pressure, P, is applied to
the inner wall of the vessel. Then, the vessel grows as a result of the release of growth factors and stress
in the system, resulting in a grown, deformed configuration at time t̂ > 0.

Because our model is based on a multiplicative framework, we introduce notation to describe the
arterial vessel wall in a reference unstressed configuration. For time t̂ < 0, the regions Â 6 R̂ 6 B̂,
B̂ 6 R̂ 6 Ĉ and Ĉ 6 R̂ 6 D̂ define the intima, media and adventitia respectively. In the deformed state,
the intima, media and adventitia are defined by â 6 r̂ 6 b̂, b̂ 6 r̂ 6 ĉ and ĉ 6 r̂ 6 d̂. Our convention is
to use the hat accent for dimensional variables whereas dimensionless variables are unaccented.

2.1 Diffusion Model for Growth Factors

Following Fok (2012), we model the development of neointima as being driven by growth factors such
as Platelet Derived Growth Factor (PDGF). The release of PDGF comes from platelets, considered to be
the “band-aids” of the blood. A paucity of platelets can lead to poor clot formation and increased risk of
bleeding, a condition called thrombocytopenia (Patel et al., 2005). Generally, less atherosclerosis is ob-
served in thrombocytopenic rabbits (Stadius et al., 1992). Platelets are derived from megakaryocytes in
the marrow and also store other angiogenic payloads such as VEGF (vascular endothelial growth factor),
EGF (Epidermal Growth Factor) and IGF (Insulin-like Growth Factor), and our model can be modified
to include their effects. However, for simplicity, in this study we will only study a single growth factor
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and when the endothelium is injured, we assume platelets adhere to the wound, releasing PDGF (Clowes
et al., 1983). PDGF can stimulate the proliferation of smooth muscle cells in the intima and locally in-
duce growth of the tissue. Over long time scales, we may neglect transients so that the distribution of
PDGF in the current intimal reference frame û(r̂) satisfies a steady state diffusion-degradation equation:

Dc

(
1
r̂

∂ û
∂ r̂

+
∂ 2û
∂ r̂2

)
− kû = 0, â 6 r̂ 6 b̂, (2.1)

where Dc is the diffusivity for PDGF and k is the natural degradation rate of PDGF. Our boundary
conditions are

û(â) = û0 (2.2)
∂ û
∂ r̂

∣∣∣∣
r̂=b̂

= 0. (2.3)

Experimental results on rabbit arteries by Stadius et al. (1992) indicate that during intimal thick-
ening, the media thickness does not change much compared to the intima. The intima and media are
separated by a lamina which we assume is impermeable to PDGF. Therefore we assume that diffusive
transport of PDGF from the intima into the media is negligible and impose a no-flux boundary condition
in (2.3). We assume û(r̂) = 0 when b̂ 6 r̂ 6 d̂ so that there is no growth factor in the media. This is
important when we describe the growth tensor in the following section.

2.2 Wall Mechanics

In this section we summarize the basic equations of nonlinear elasticity, including the kinematics of
deformation, the analysis of stress and the governing equations of equilibrium, and we introduce the
constitutive laws for the model.

2.2.1 Deformation and Decomposition. We consider a finite deformation in which the cylinder is
allowed to grow and deform while remaining cylindrical and we restrict ourselves to radial deforma-
tions uniform along the tube axis. Therefore, we focus only on the cross section of the vessel. The
deformation is described by the function

r̂ = r̂(R̂), Â 6 R̂ 6 D̂, (2.4)

and the deformation gradient tensor, denoted F, in cylindrical coordinates is given by F= diag(r̂′(R̂), r̂/R̂,1).
The tensor F describes how an infinitesimal line element of material is stretched due to the deformation,
and the volume deformation is given by detF.

Consistent with a morphoelastic theory of growth (Rodriguez et al., 1994), we now assume that the
deformation gradient can be decomposed as the product of a growth tensor, Fg and an elastic tensor,
Fe; that is, F = FeFg. Since growth factors are only present in the intima, we assume the growth tensor
takes the form

Fg =

{
diag(g,g,1), â 6 r̂ 6 b̂,

I, b̂ < r̂ 6 d̂,
(2.5)

where g(r̂, t̂) is the (dimensionless) geometric stretch factor associated with growth. and I is the identity
tensor. For modeling simplicity, we assume that the stretch factors in the radial and azimuthal directions
are the same. The elastic tensor is given by Fe = diag(αr,αθ ,αz) where αr, αθ and αz are geometric
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stretch factors in the radial, circumferential and axial directions associated with the elastic deformation.
Because we only consider radial deformations along the axis, we always take αz = 1.

The high water content of blood vessels justifies the usual assumption that all three layers of the
vessel are incompressible and experimental observations support this assumption (Dobrin and Rovick,
1969; Lawton, 1954). The elastic incompressibility condition detFe = 1 implies that αθ ·αr = 1. Com-
paring components of F = FeFg, we find that the elastic stretch factors are

αθ =
r̂

R̂g
≡ α, αr =

R̂g
r̂

≡ 1/α, â 6 r̂ 6 b̂, (2.6)

αθ =
r̂
R̂
≡ α, αr =

R̂
r̂
≡ 1/α , b̂ < r̂ 6 d̂. (2.7)

The decomposition F=FeFg together with the incompressibility condition implies detF= detFg. There-
fore the function r̂(R̂) satisfies the ordinary differential equation

r̂
∂ r̂
∂ R̂

=

{
R̂g2(r̂, t̂), Â 6 R̂ 6 B̂,

R̂, B̂ < R̂ 6 D̂,

r̂(Â) = â.

(2.8)

Note that r̂(R̂), â, b̂, ĉ and d̂ all depend on t̂ but we omit the explicit dependence to simplify the presen-
tation of the equations. The function r̂(R̂) does depend on t̂ but only through g(r̂, t̂) in eq. (2.8). Because
t̂ only appears explicitly in g and time derivatives do not appear in any of the governing equations, it
may be treated as a parameter of the problem. For fixed t̂, the solution to eq. (2.8) defines a bijection
from [â, b̂] to [Â, B̂], from [b̂, ĉ] to [B̂,Ĉ] and from [ĉ, d̂] to [Ĉ, D̂]. If â and g(r̂, t̂) are known, the current
configuration is completely determined by the integration of eq. (2.8).

2.2.2 Stress and Equilibrium. The surface force per unit area (or stress vector) on an area ele-
ment is denoted by t with unit normal n. The stress vector may be expressed as t = T̂T n, where
T̂ = diag(T̂rr, T̂θθ , T̂zz) is called the Cauchy stress tensor. Balancing linear momentum (divT̂T = 0)
and angular momentum (T̂ = T̂T ) , the mechanical equilibrium equation becomes

divT̂ = 0. (2.9)

Assuming the material is incompressible, the Cauchy stress T̂ in the intima and media/adventitia, is
related to the elastic deformation, Fe, by

T̂ = Fe
∂W
∂Fe

− pI, (2.10)

where p is a Lagrange multiplier associated with the internal constraint of incompressibility, and W =
W1,W2,W3 is the strain energy function describing the intima, media and adventita respectively. Equa-
tions (2.9,2.10), and the incompressibility constraint detFe = 1 provide four equations to solve for
r̂(R̂, t̂), T̂rr, T̂θθ and p.

2.2.3 Elastic Response We assume that the body is hyperelastic and therefore the material can be
described by a strain energy function W =W (Fe). For the intima, we use a neo-Hookean strain energy
density function to describe the material:

W1(I1) = µ1(I1 −3), (2.11)
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where I1 = α2
r +α2

θ +α2
z is an invariant of the right Cauchy-Green tensor C = FT

e Fe. Using Equation
(2.6), I1 = α−2 +α2 +1. While the stiffness of human plaques in their late stages have been measured
by many authors such as Lee et al. (1992); Barrett et al. (2009), Baldewsing et al. (2004) and Born and
Richardson (1990), layer specific studies are rarer. Generally, there are few studies that measure µ1 and
even fewer studies that measure µ1 for non-human organisms (in this paper we are primarily interested
in the intima growth of rabbits and rodents). Holzapfel et al. (2005) have measured µ1 in humans, but
its value varies greatly from sample to sample. In tables 1 and 2, we estimate µ1 = 20 kPa but for later
results, consider a range of values for µ1.

For the media and adventitia, many authors such as Gasser et al. (2006), Akyildiz et al. (2011), Badel
et al. (2011) and Holzapfel (2000) adopt exponential-type strain energy functions. We follow Holzapfel
(2000) and Badel et al. (2011) and adopt a form

Wk(I1, I4) = µk(I1 −3)+
ηk

βk

(
eβk(I

(k)
4 −1)2 −1

)
, k = 2,3, (2.12)

I(k)4 = α2
θ cos2 φk +α2

z sin2 φk = α2 cos2 φk + sin2 φk, (2.13)

representing the media (k = 2) and adventitia (k = 3). Anisotropy in (2.12) arises due to the presence
of embedded collagen fibers aligned tangentially to the surface of the tissue and is manifested through
the dependence on the invariant I(k)4 , with 2φk being the angle between these fibers: at large strains, the
medial and adventitial layers become stiffer due to their presence. Note that the material properties of
the media and adventitia are layer-specific and characterized by the 4 parameters (µ2,η2,β2,φ2) and
(µ3,η3,β3,φ3) respectively. Their values are taken from Holzapfel (2000) and Badel et al. (2011) and
are summarized in Tables 1 and 2 for both rabbits and rodents, two animals where intima hyperplasia
has been experimentally characterized in considerable detail.

Symbol Meaning Value Reference/Notes
µ1 intima material constant 20 kPa Estimated
µ2 media material constant 1.5 kPa Holzapfel (2000)
η2 media material constant 2.36 kPa Holzapfel (2000)
β2 media material constant 0.83 Holzapfel (2000)
φ2 media fiber angle 29.0◦ Holzapfel (2000)
µ3 adventitia material constant 0.15 kPa Holzapfel (2000)
η3 adventitia material constant 0.56 kPa Holzapfel (2000)
β3 adventitia material constant 0.71 Holzapfel (2000)
φ3 adventitia fiber angle 62.0◦ Holzapfel (2000)
Â lumen radius 1 mm Stadius et al. (1992)
B̂ internal elastic lamina radius 1.001 mm Estimated
Ĉ external elastic lamina radius 1.06 mm Stadius et al. (1992)
D̂ vessel radius 1.110 mm Stadius et al. (1992)
τ Duration of experiment 45 days Stadius et al. (1992)

Dc PDGF diffusivity - Free parameter
k PDGF degradation rate - Free parameter
P arterial pressure 100 mmHg Estimated

Table 1. Model parameters for a rabbit carotid artery. PDGF = Platelet Derived Growth Factor.
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Symbol Meaning Value Reference/Notes
µ1 intima material constant 20 kPa Estimated
µ2 media material constant 4.4 kPa Badel et al. (2011)
η2 media material constant 13.9 kPa Badel et al. (2011)
β2 media material constant 21.6 Badel et al. (2011)
φ2 media fiber angle 41.9◦ Badel et al. (2011)
µ3 adventitia material constant 4.4 kPa Badel et al. (2011)
η3 adventitia material constant 11.8 kPa Badel et al. (2011)
β3 adventitia material constant 0.242 Badel et al. (2011)
φ3 adventitia fiber angle 5.14◦ Badel et al. (2011)
Â lumen radius 0.38 mm Clowes et al. (1983)
B̂ internal elastic lamina radius 0.3805 mm Estimated
Ĉ external elastic lamina radius 0.42 mm Clowes et al. (1983)
D̂ vessel radius 0.45 mm Clowes et al. (1983)
τ Duration of experiment 14 weeks Clowes et al. (1983)

Dc PDGF diffusivity - Free parameter
k PDGF degradation rate - Free parameter
P arterial pressure 120 mmHg Estimated

Table 2. Model parameters for a rodent carotid artery. PDGF = Platelet Derived Growth Factor.

2.2.4 Finite Deformation. The only non-vanishing component of the mechanical equilibrium equa-
tion divT̂ = 0, is

∂ T̂rr

∂ r̂
+

T̂rr − T̂θθ
r̂

= 0, (2.14)

where T̂rr and T̂θθ are the radial and hoop Cauchy stresses. Introducing the auxiliary functions ωk(α) =
Wk(α−1,α) for k = 1,2,3, eqs. (2.11) and (2.12) imply that

ω1(α) = µ1(α2 +α−2 −2),

ω2(α) = µ2(α2 +α−2 −2)+
η2

β2

(
eβ2(α2 cos2 φ2+sin2 φ2−1)2 −1

)
,

ω3(α) = µ3(α2 +α−2 −2)+
η3

β3

(
eβ3(α2 cos2 φ3+sin2 φ3−1)2 −1

)
.

(2.15)

The stress-strain relationship in (2.10) can be used in eq. (2.14) to obtain

∂ T̂rr(r̂)
∂ r̂

=



α
r̂

∂ω1

∂α
, â 6 r̂ 6 b̂,

α
r̂

∂ω2

∂α
, b̂ 6 r̂ 6 ĉ,

α
r̂

∂ω3

∂α
, ĉ 6 r̂ 6 d̂,

(2.16)

where α in the intima â 6 r̂ 6 b̂, media b̂ < r̂ 6 ĉ and adventitia ĉ 6 r̂ 6 d̂ are given by (2.6) and (2.7)
respectively. We assume an internal pressure, P, at the inner boundary so that T̂rr(r̂ = â) =−P.
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The form of the outer boundary condition depends on the presence of perivascular tissue. Although
its effect on the adventitia is unclear at the moment, we refer to Masson et al. (2008) for some prelimi-
nary studies. In our model for simplicity, we assume zero traction on the outer boundary: T̂rr(r̂ = d̂) = 0.
Using these boundary conditions, we integrate equation (2.16) to obtain the radial stress as

T̂rr(r̂) =



−P+η2

∫ r̂

â
α2(r̂′)Q1[α(r̂′)]

dr̂′

r̂′
, â 6 r̂ 6 b̂,

−η2

∫ d̂

ĉ
α2(r̂′)Q3[α(r̂′)]

dr̂′

r̂′
−η2

∫ ĉ

r̂
α2(r̂′)Q2[α(r̂′)]

dr̂′

r̂′
, b̂ 6 r̂ 6 ĉ,

−η2

∫ d̂

r̂
α2(r̂′)Q3[α(r̂′)]

dr̂′

r̂′
, ĉ 6 r̂ 6 d̂,

(2.17)

where Q j[α ], j = 1,2,3 are

Q1[α ] =
2µ1

η2

(
1−α−4) , (2.18)

Q2[α ] =
2µ2

η2
(1−α−4)+4cos2 φ2(α2 cos2 φ2 + sin2 φ2 −1)eβ2(α2 cos2 φ2+sin2 φ2−1)2

, (2.19)

Q3[α ] =
2µ3

η2
(1−α−4)+

4η3

η2
cos2 φ3(α2 cos2 φ3 + sin2 φ3 −1)eβ3(α2 cos2 φ3+sin2 φ3−1)2

.(2.20)

The hoop stress is then given by T̂θθ = r̂ ∂ T̂rr
∂ r̂ + T̂rr:

T̂θθ (r̂) = T̂rr +


η2α2(r̂)Q1[α(r̂)], â 6 r̂ 6 b̂
η2α2(r̂)Q2[α(r̂)], b̂ < r̂ 6 ĉ,
η2α2(r̂)Q3[α(r̂)], ĉ < r̂ 6 d̂,

(2.21)

where we have used (2.14) and (2.16). The inner boundary, â, is determined by the boundary conditions
at the interfaces of the three layers. At the surfaces of stress discontinuity r̂ = b̂ and r̂ = ĉ, the associated
traction needs to be equal but opposite, which requires the radial stress to be continuous across r̂, that is

T̂rr(b̂+) = T̂rr(b̂−) ⇒ − P
η2

+
∫ b̂

â
α2(r̂′)Q1[α(r̂′)]

dr̂′

r̂′
=

T̂rr(ĉ)
η2

−
∫ ĉ

b̂
α2(r̂′)Q2[α(r̂′)]

dr̂′

r̂′
,(2.22)

T̂rr(ĉ+) = T̂rr(ĉ−) ⇒ T̂rr(ĉ)
η2

=−
∫ d̂

ĉ
α2(r̂′)Q3[α(r̂′)]

dr̂′

r̂′
. (2.23)

Since there is always a one-to-one correspondence between the reference and current configurations,
eq. (2.22) and eq. (2.23) can be recast in terms of the reference radial coordinate R̂. In addition, the
expression for T̂rr(ĉ) in eq. (2.23) can be used in eq. (2.22):

− P
η2

+
∫ B̂

Â
Q1[α(R̂)]

dR̂
R̂

+
∫ Ĉ

B̂
Q2[α(R̂)]

dR̂
R̂

+
∫ D̂

Ĉ
Q3[α(R̂)]

dR̂
R̂

= 0. (2.24)

2.2.5 Growth Function. The equations above need to be supplemented with a specific form for the
function g(r̂, t̂) in (2.5). Through conservation of mass, one can show that the growth tensor Fg is related
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to the growth rate Γ through the relationship tr(F−1
g Ḟg) = Γ (Ben Amar et al., 2011). This is the tensor

generalization of the “natural” definition for growth rate in terms of scalar stretch factors Γ = Ḟg/Fg.
It follows that the growth rate Γ for the intima is given by Γ = 2

g
∂g
∂ t̂ with initial condition g(0) = 1.

Solving for g, we find that

g(r̂, t̂) = exp
{

1
2

∫ t̂

0
Γ (r̂, t̂ ′)dt̂ ′

}
. (2.25)

Although g is the geometric stretch due to growth, for simplicity, we will refer to g in (2.25) simply as
the growth function. Eq. (2.25) states that the growth function at time t̂ depends on the history of the
growth rate Γ up to time t̂. However, implementing (2.25) in our model is computationally intensive
and so for simplicity, we use instead the approximation

g(r̂, t̂)≈ exp
{

Γ (r̂, t̂)t̂
2

}
. (2.26)

We checked that using (2.26) instead of (2.25) does not change the qualitative nature of the vessel
evolution.

The form of the biomechanical growth law associated with Γ is a topic of ongoing research. Studies
such as Taber (1995) and Luo et al. (1995) have proposed growth and remodeling laws for bone and
soft tissues that depend on stress, strain rate, and strain-energy density. Many experimental studies
such as Ueba et al. (1997) and Sterpetti et al. (1993) show that smooth muscle cells are sensitive to the
magnitude of local stress and may show smaller or larger proliferation rates accordingly. Volokh (2006)
shows that circumferential stresses can be larger than the radial stress by an order of magnitude and play
a significant role in cell proliferation. In particular, Wayman et al. (2008) show that smooth muscle cell
proliferation is significantly greater at high circumferential stress. In light of these studies, we assume
that the growth rate is proportional to deviations from some homeostatic circumferential stress T̃θθ :

Γ (r̂, t̂) = ζ (T̂θθ − T̃θθ (r̂, û)), (2.27)

where ζ > 0 has units of (time × stress)−1. Because the presence of PDGF is known to increase
cell proliferation rate (Yu et al., 2003) and regulate the homeostatic environment of cells (Heuchel
et al., 1999), we have allowed T̃θθ in (2.27) to depend on the local PDGF concentration. Another
interpretation of (2.27) is that PDGF modulates the local homeostatic stress. Different parts of the
vessel wall experience a different homeostatic stress depending on the local concentration of cytokine
and vessel wall tissue grows in order to achieve its local “desired” homeostatic stress state. Eq. (2.27)
also allows for resorption which could arise from the effects of enzymes or a net decrease in smooth
muscle cell population.

For a fixed stress T̂θθ and position r̂, the growth rate should increase with PDGF concentration,
implying that ∂ T̃θθ/∂ û < 0: see Fig. 2. The experiments of Sterpetti et al. (1993) on bovine arterial
SMCs indicate that PDGF may also be released by cells under stress, but strictly speaking, this is
neglected in our model where the only source of PDGF is from platelets that adhere to the endothelium.
However, we can qualitatively mimic the effect of PDGF-mediated bulk growth by taking kL2/Dc ≪ 1
where L is a baseline, or typical intimal thickness. In this limit, PDGF degrades very slowly so that the
entire intima is saturated with PDGF and undergoes a bulk growth.

Finally we note that there are two time scales to this problem: one associated with growth (“slow”)
and one associated with relaxation of stresses and cytokines (“fast”). By assuming that stresses and cy-
tokine concentrations relax much more quickly compared to the evolution of the geometric domain (the
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FIG. 2. The range of stresses T̂θθ that results in a positive growth rate increases with increasing PDGF concentration û. Equiva-
lently, the homeostatic stress T̃θθ is a decreasing function of û.

adiabatic or quasi-steady approximation), we solve the steady-state equations (2.14) and (2.1) instead
of their fully time-dependent counterparts. Nevertheless, T̂θθ = T̂θθ (r̂, t̂) in eq. (2.27) evolves on the
“slow” time scale and is a function of t̂ because the domain â(t̂) 6 r̂ 6 d̂(t̂) also evolves on the slow
time scale.

3. Non-dimensionalization

We introduce dimensionless variables

u = û/u0, (3.1)
r = r̂/L, L = D̂− Â, (3.2)
R = R̂/L, (3.3)
A = Â/L, a = â/L, (3.4)
B = B̂/L, b = b̂/L, (3.5)
C = Ĉ/L, c = ĉ/L, (3.6)
D = D̂/L, d = d̂/L, (3.7)
t = t̂/τ, (3.8)

T = T̂/η2, (3.9)

where τ is the timescale associated with hyperplasia, which could be on the order of weeks for the
denudation experiments in animals but years for angioplasty or GVD-induced IT in humans. We have
rescaled the variables so that the thickness of the undeformed intima-media-adventitia composite layer
is 1 and used η2 as a reference stress.

The diffusion-degradation equation in eq. (2.1) is non-dimensionalized, and we find that the distri-
bution of PDGF satisfies

r2u′′(r)+ ru′(r)−λ 2r2u = 0, λ =
√

kL2/Dc, (3.10)



INTIMAL HYPERPLASIA 11 of 35

with boundary conditions

u(a) = 1, (3.11)
u′(b) = 0, (3.12)

where the prime denotes a derivative with respect to r. With these boundary conditions, the solution to
(3.10) is

u(r) =
K1(λb)I0(λ r)+ I1(λb)K0(λ r)
I1(λb)K0(λa)+ I0(λa)K1(λb)

, (3.13)

where I j(·) and K j(·) are modified Bessel functions of the first and second kind. Because Dc and k are
free parameters in our model, λ in eq. (3.10) is treated as a free dimensionless parameter. The mapping
from the reference frame to the current frame satisfies the ODE

dr
dR

=

{
Rg2(r, t;a,b)/r, A 6 R 6 B,

R/r, B < R 6 D,
(3.14)

subject to the initial condition
r(A) = a. (3.15)

Now we non-dimensionalize the growth function g; see eqs. (2.26) and (2.27). What is the functional
form of the homeostatic stress T̃θθ (r̂, û)? In this paper, we take

T̃θθ (r̂, û) = G1(r̂)+G2û, (3.16)

where G2 < 0 is a negative constant since ∂ T̃θθ
∂ û < 0. This form of T̃θθ has desirable biological and

mathematical properties. Substituting (3.16) into (2.27), we have

Γ τ = ν1(Tθθ − T̄θθ (r))+ν2u, (3.17)

where we define

ν1 = η2ζτ , ν2 =−ζ u0τG2, T̄θθ (r) =
G1(r̂)

η2
, (3.18)

as dimensionless parameters and ν1,ν2 > 0. Both ν1 and ν2 are treated as free parameters in our model.
Note that T̃θθ (r̂,0) = G1(r̂) in eq. (3.16) is the homeostatic hoop stress in the absence of PDGF. We
identify ν1(Tθθ − T̄θθ ) as the contribution to the growth rate due to local stress and ν2u as the contri-
bution to the growth rate due to the presence of PDGF. Furthermore, when the local stress is identical
to this baseline homeostatic stress, the growth rate is just proportional to the PDGF concentration. One
would certainly expect this to be true for low concentrations and Hill-type saturation effects can also be
modeled by appropriate modification of eq. (3.16).

The full growth function is

g(r, t,T) = exp
[

ν1t(Tθθ − T̄θθ (r))
2

]
× exp

ν2t
2

× I1(λb)K0(λ r)+K1(λb)I0(λ r)
I1(λb)K0(λa)+ I0(λa)K1(λb)︸ ︷︷ ︸

u

 , (3.19)

so that at a fixed time t, the magnitude of g changes with r. In particular, when ν1 = 0,ν2 > 0, g
decreases with r because the PDGF concentration u decreases away from the endothelium at r = a. By
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assuming that T̃θθ has an additive structure in eq. (3.16), we see that the growth function (3.19) has a
multiplicative dependence on PDGF concentration and deviation from baseline homeostatic stress.

Another benefit of assuming eq. (3.16) is that T̄θθ (r) in (3.17) is simple to calculate and is intuitively
easy to understand. When there is no injury and no release of PDGF (u = 0), the growth rate should
be zero, the pressurized vessel should be in mechanical equilibrium and g = 1. Therefore, the resulting
hoop stress in the pressurized vessel must be identical to the homeostatic hoop stress T̄θθ (r). The
calculation of T̄θθ (r) initializes our algorithm to simulate intimal thickening and details can be found in
the appendix.

Now we dimensionalize eq. (2.24) to find

− P
η2

+
∫ D

C

Q3[α(R)]dR
R

+
∫ B

A

Q1[α(R)]dR
R

+
∫ C

B

Q2[α(R)]dR
R

= 0, (3.20)

where the elastic deformation viewed from the reference frame is

α(R, t;a,b) =


r(R)

Rg[r(R), t;a,b]
, A 6 R 6 B,

r(R)
R

, B < R 6 D,

(3.21)

while the elastic deformation viewed from the current configuration is

α(r, t;a,b) =


r

R(r)g[r, t;a,b]
, a 6 r 6 b,

r
R(r)

, b < r 6 d.
(3.22)

As a shorthand, we have used α for both types of deformation and they are distinguished by their
arguments. The dimensionless radial and hoop stresses are

Trr(r) =



− P
η2

+
∫ r

a
α2(r′)Q1[α(r′)]

dr′

r′
, a 6 r 6 b,

−
∫ d

c
α2(r′)Q3[α(r′)]

dr′

r′
−

∫ c

r
α2(r′)Q2[α(r′)]

dr′

r′
, b 6 r 6 c,

−
∫ d

r
α2(r′)Q3[α(r′)]

dr′

r′
, c 6 r 6 d,

(3.23)

Tθθ (r) = Trr(r)+


α2(r)Q1[α(r)] a 6 r 6 b,
α2(r)Q2[α(r)], b < r 6 c,
α2(r)Q3[α(r)], c < r 6 d.

(3.24)

4. Validation study

The solution to our model at a fixed t involves the four unknown boundaries a(t), b(t), c(t), d(t) and the
six unknown functions Trr(r, t), Tθθ (r, t), α(r, t), g(r, t), Γ (r, t) and u(r, t) (although Γ (r, t) is easily de-
rived from g(r, t) and u is calculated from eq. (3.13)). When t = 0, g = 1 and the base homeostatic stress
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T̄θθ is calculated as the hoop stress response to the applied internal pressure P. We find these quantities
by solving eqs. (3.10)-(3.15) and eqs. (3.19)-(3.24) for a given t and an appropriate discretization of
[a,d]. The result is a large set of algebraic equations which can be solved at each t using Newton’s
method. More details are given in Appendix A.

To check that our numerical method performs correctly, we find an asymptotic solution to (3.10)-
(3.15) in the case when P = λ = 0, valid when t = δ t ≪ 1. These solutions are given below, and their
derivation is discussed in Appendix B.

δTθθ (R) ∼ −ν2δ t
4∆

(
1+

A2

R2

)
B2Q′

1[1]
(
C2D2Q′

2[1]+B2D2(Q′
3[1]−Q′

2[1])−B2C2Q′
3[1]

)
,

δ r(R) ∼ ν2δ t
2∆

(
A2C2D2(Q′

2[1]−Q′
1[1])R+A2B2D2(Q′

3[1]−Q′
2[1])R−B2C2(A2Q′

3[1]−D2Q′
1[1])R

−A2B4D2(Q′
3[1]−Q′

2[1])R
−1 +A2B2C2(B2Q′

3[1]−D2Q′
2[1])R

−1) ,
δa(t) ∼ −ν2δ t

2∆
A(B2 −A2)

(
B2D2(Q′

3[1]−Q′
2[1])+C2D2(Q′

2[1]−Q′
1[1])−B2C2Q′

3[1]
)
, (4.1)

δb(t) ∼ ν2δ t
2∆

B(B2 −A2)C2D2Q′
1[1],

δc(t) ∼ ν2δ t
2∆

C(B2 −A2)B2D2Q′
1[1],

δd(t) ∼ ν2δ t
2∆

D(B2 −A2)B2C2Q′
1[1].

for 0 6 δ t ≪ 1, where

∆ = B2C2D2Q′
1[1]+A2B2D2(Q′

3[1]−Q′
2[1])+A2C2D2(Q′

2[1]−Q′
1[1])−Q′

3[1]A
2B2 (4.2)

and Q′
1[1] =

8µ1
η2

, Q′
2[1] = 8

(
µ2
η2

+ cos4 φ2

)
and Q′

3[1] = 8
(

µ3
η2

+ cos4 φ3

)
. In Figure 3, we see that the

full computational solution and the asymptotic solution (4.1) match well with each other for small times.

5. Results

There are three main factors that give rise to rich and interesting behaviors for our model. First, the
growth depends on both local stress and cytokine concentration. Released growth factors stimulate
growth within the intima which modulates the local stress. The stress in turn feeds back into the growth
function.

Second, the growth is non-uniform within the intima: it is generally larger near the lumen and
smaller near the media. By making λ ≫ 1, we can localize growth factor near the lumen. The other
extreme is when λ ≪ 1. This corresponds to a long half-life for the growth factor so that it is present
at high concentrations throughout the entire intima. The two limits give rise to qualitatively different
evolutions, as we will discuss later. A similar phenomenon is seen in spherical tumors (Ben Amar et al.,
2011) that are fed by nutrients. Initially, the tumor undergoes exponential growth since all cells in the
tumor have access to high levels of nutrient. As the tumor grows, high levels of nutrients are present in
only the outermost “shell” of cells and the growth transitions from exponential to linear.

Third, the media thins as it deforms in order to conserve mass. A further complication is that both
the intima and media stiffen as they deform and interesting dynamics arises due to competing stiffnesses.
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FIG. 3. Comparison of full numerical solution (solid lines) and asymptotic solution (4.1) (dashed lines). The perturbations δ r and
δTθθ are shown as functions of reference frame coordinate R in the intima A < R < B at time t = 0.01. Problem parameters are
P = 0, A = 1/3, B = 2/3, C = 1, D = 4/3, µ1 = 3 kPa, µ2 = 1.5 kPa, µ3 = 0.15 kPa, η2 = 2.36 kPa, η3 = 0.56 kPa, β2 = 0.83,
β3 = 0.71, φ2 = 29π/180, φ3 = 62π/180, ν1 = 0.1, ν2 = 5, λ = 0.

We now briefly study two simple cases: a pure elastic response (ν1 > 0,ν2 = 0) and cytokine-driven
growth (ν1 = 0,ν2 > 0). These cases are helpful for understanding the general case of cytokine and
stress-driven growth (ν1 > 0,ν2 > 0).

5.1 Pure elastic response (ν1 > 0, ν2 = 0)

When ν2 = 0, the growth rate is given by Γ τ = ν1(Tθθ − T̄θθ (r)). Recall that the homeostatic
stress, T̄θθ (r) is the stress distribution for a pressurized vessel when there is no PDGF so Tθθ = T̄θθ (r).
Therefore the growth rate is exactly zero with no cytokines and the vessel is in mechanical equilibrium.
Thus we investigate how the deformation of the vessel wall changes with lumen pressure.

Measurements of intima-media thickness (IMT) are sometimes performed by clinicians to ascertain
risk of cerebrovascular and cardiovascular events (Bots et al., 1997). For example, the carotid artery’s
IMT can be measured non-invasively using ultrasound (Aminbakhsh and Mancini, 1999). Figure 4
shows the initial deformation of the vessel wall along with the IMT. Recall that for t < 0, no internal
pressure is applied but for t > 0, the lumen experiences a pressure P. The mean stress in the intima,
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FIG. 4. (a) Initial response of vessel wall radii as a function of luminal pressure at t = 0+. No growth is considered. Inset: IMT
as a function of carotid pressure. (b) Mean stresses in the intima, media and adventitia associated with the initial response in (a).
Model parameters are given in Table 1 with µ1 = 100 kPa.

media and adventitia are calculated as:

⟨Tθθ ⟩i =
2

b2 −a2

∫ b

a
Tθθ (r)rdr, (5.1)

⟨Tθθ ⟩m =
2

c2 −b2

∫ c

b
Tθθ (r)rdr, (5.2)

⟨Tθθ ⟩a =
2

d2 − c2

∫ d

c
Tθθ (r)rdr, (5.3)

with the definitions for ⟨Trr⟩i, ⟨Trr⟩m and ⟨Trr⟩a identical to (5.1)-(5.3) but with Tθθ (r) replaced with
Trr(r).

Our results in Figure 4(a) suggest that when the media deforms outwards, through conservation of
mass, it must also thin. Therefore, IMT measurements can be (artificially) lowered. Generally, we see
that when the pressure increases, the thicknesses of the intima and media both decrease, resulting in a
smaller IMT.

Figures 4(b) and(c) shows that when the vessel is subjected to an internal pressure, the wall develops
compressive radial stresses and tensile circumferential stresses. Stresses are relatively high in the intima
and media compared with those in the adventitia. Another interesting observation is that at higher
pressure, the tensile hoop stress in the media is larger than that of the intima. This is due to the proposed
material properties of each layer. The media is assumed to be composed of an anisotropic model due to
the presence of collagen fibers. As the applied pressure increases, the collagen fibers stiffen and become
load-bearing. This limits arterial distension, as observed in Figure 4(a).

5.2 Cytokine-driven growth (ν1 = 0, ν2 > 0)

In this case, there is no “preferred” stress distribution for the vessel and the growth rate is Γ τ = ν2u.
The time-evolution of the wall radii, stresses, the growth function, and other metrics are shown in Fig.
5. There is no homeostasis to inhibit tissue growth and therefore the growth function and hoop stress
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FIG. 5. Cytokine-driven growth for a rodent artery with (ν1,ν2,λ ) = (0,4,1.3). Other parameter values are from Table 2.

can increase without bound. As the intima rapidly expands, the resulting hoop stresses are orders of
magnitude larger than radial stresses.

When ν1 = 0, it is generally more difficult to obtain convergence in the Newton iteration, and this
is especially true for large values of ν2. Taking a small positive value for ν1 (which we do in the next
section) appears to have a regularizing effect on the convergence.

5.3 Cytokine and Stress-Driven Growth (ν1 > 0, ν2 > 0)

With ν1 > 0, the homeostatic feedback in our model implies that intimal thickening is essentially stable.
Given enough time, IMT should eventually saturate and the system finds a steady state corresponding
to Γ = 0. In other words, the system evolves so that the hoop stress Tθθ satisfies

Tθθ (r) = T̄θθ (r)−
ν2

ν1

[
K1(λb)I0(λ r)+ I1(λb)K0(λ r)
I1(λb)K0(λa)+ I0(λa)K1(λb)

]
. (5.4)

We may interpret the right hand side of (5.4) as an effective homeostatic stress – it is the “baseline”
homeostatic stress T̄θθ (r), modulated by the presence of growth factor with dimensionless decay rate
λ . In steady state, g in eq. (2.26) must be independent of time. Therefore the growth rate, Γ must
scale like 1/t̂, decreasing algebraically slowly. We were able to confirm this result numerically (results
not shown). Given enough time, the hoop stress distribution reaches the effective homeostatic value,
given by eq. (5.4) and intimal growth should saturate. This behavior is confirmed by data from animal
experiments in the next section.
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5.3.1 Comparison with animal data

The results of our model can be fit to data from animal models of atherosclerosis; specifically arterial
denudation experiments on the iliac arteries of New Zealand White rabbits (Stadius et al., 1992) and the
carotid arteries of Sprague-Dawley rats (Clowes et al., 1983). The experimental protocols in both studies
were similar. The animals were anesthetized, the relevant artery was exposed through a wound and
endothelial denudation was performed using a balloon catheter. Then the artery was ligated, the wound
was closed and the animals were allowed to recover. In the rabbit experiments of Stadius et al. (1992)
the animals were also put on a 2% cholesterol diet. Regularly throughout the course of the experiment,
animals were sacrificed and morphometric measurements of the intima and media were made. In both
sets of experiments, there was generally little change in the media area compared to the intima. In the
rat experiments, each data point was an average over three animals. In the rabbit experiments, each data
point came from a single animal.

A natural question to ask is if our model can reproduce the results from these experiments. In Figs.
6 and 8, we determine the parameters that best-fit our model using the Matlab optimization routine
fmincon.m and estimate credible intervals for these parameters using a Bayesian approach and the
Metropolis-Hastings algorithm.

We introduce random variables Θ = (Θ1,Θ2,Θ3)≡ (− log(ν1),ν2,− log(λ )) and Ω for the parame-
ters and data, respectively. Let θ ≡ (θ1,θ2,θ3) and ω be particular realizations of Θ and Ω respectively.
We denote the prior distribution of (Θ1,Θ2,Θ3) as P(θ). Then Bayes’ rule updates P(θ) in light of
experimental data ω:

P(θ |ω) ∝ P(ω|θ)P(θ) (5.5)

In eq. (5.5), the data ω consists of N pairs (ti,Yi), i = 1, . . . ,N, representing times at which animals were
sacrificed and the corresponding measured intima area at that time. The likelihood function P(ω |θ) is
assumed to take the form

P(ω|θ) = exp(−χ2), (5.6)

χ2 = −1
2

N

∑
i=1

[
Yi − y(ti|θ)

∆

]2

, (5.7)

where y(t|θ) ≡ π[b2(t;ν1,ν2,λ )− a2(t;ν1,ν2,λ )] is the intima area as predicted by our model and
∆ is the approximate magnitude of error in the experiments (e.g. it could be the approximate length
of the error bars). Note that the likelihood (5.6) is maximimized when the least-squares error χ2 =

1
2∆ 2 ∑N

i=1 [Yi − y(ti|θ)]2 is minimized. For the prior P(θ), we take P(θ) = PΘ1(θ1)PΘ2(θ2)PΘ3(θ3) where
PΘ1 , PΘ2 and PΘ3 are uniform densities with supports [ℓ1, ℓ2], [ℓ3, ℓ4] and [ℓ5, ℓ6] respectively.

We use the Metropolis-Hastings algorithm to sample from the posterior density (5.5): see Appendix
C. The algorithm is initialized with (θ (0)

1 ,θ (0)
2 ,θ (0)

3 ) which is found by (deterministically) minimiz-
ing χ2 in the domain [ℓ1, ℓ2]× [ℓ3, ℓ4]× [ℓ5, ℓ6] using Matlab’s fmincon.m routine. The maximum
likelihood estimates (MLE) and 95% credible intervals of Θ1, Θ2 and Θ3 are given by the modes
and [2.5,97.5] percentiles of the distributions PΘ1 , PΘ2 and PΘ3 . Therefore, credible intervals for the
best-fit parameters (ν1,ν2,λ ) are in the form [exp(−Θ (97.5)

1 ),exp(−Θ (2.5)
1 )] for ν1, [Θ (2.5)

2 ),Θ (97.5)
2 )]

for ν2 and [exp(−Θ (97.5)
3 ),exp(−Θ (2.5)

3 )] for λ , where X (p) is the pth percentile for the random vari-
able X . Increasing ν1 in our model causes the intima area to saturate more quickly, increasing ν2
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FIG. 6. (a,b) Intima and media areas of New Zealand white rabbits taken from Stadius et al. (1992) along with model predic-
tion using best-fit parameters (ν1,ν2,λ ) = (0.01,15.5,0.00) and credible intervals obtained using the Metropolis-Hastings (MH)
algorithm. Intima stiffness is µ1 = 20 kPa and all other parameters are taken from Table 1. (c,d,e) Marginal distributions of
PΘ1 , PΘ2 and PΘ3 with 20-bin resolution are used to calculate maximum likelihood estimates and credible intervals. The 2.5 and
97.5 percentiles for Θ1, Θ2 and Θ3 are (4.2,4.8), (14.1,17.8) and (4.1,6.9) respectively. The dashed error-envelope in (a) corre-
sponds to intima area development when (ν1,ν2,λ ) = (0.015,14.1,0.017) for the lower bound and (0.01,17.8,0.00) for the upper
bound. The MH parameters are numtrials = 180,000 samples, initial guess θ (0) = [4.5099,15.4323,5.3391], (ℓ1, ℓ2) = (4,6),
(ℓ3, ℓ4) = (14,18) and (ℓ5, ℓ6) = (4,7). Random walk stepsizes are (σ1,σ2,σ3) = (0.1,0.2,0.15) and the experimental error is
estimated from the error bars in Stadius et al. (1992) as ∆ = 0.2 mm2.
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FIG. 7. Growth of a rabbit artery with parameters (ν1,ν2,λ ) = (0.01,15.5,0.00) corresponding to the best fit (thick solid) curve in
Figure 6(a). (a) Wall boundaries a(t), b(t), c(t) and d(t) as functions of time t. Final time t = 1 corresponds to t̂ = 45 days. Note
the rapid expansion of intima thickness b−a. (b)-(f) Radial stress, hoop stress, elastic stretch, growth function and dimensionless
growth rate (see eq. (3.17)) are indicated at t = 0,0.4,0.8 and 1.0.

increases the rate of intima growth and increasing λ decreases the rate of change. Therefore, we con-
struct an envelope of solutions, indicated by the dashed lines in Figs. 6(a) and 8(a) by solving our
model with (ν1,ν2,λ ) =

(
exp(−Θ (97.5)

1 ),Θ (97.5)
2 ,exp(−Θ (97.5)

3 )
)

as the upper bound and (ν1,ν2,λ ) =(
exp(−Θ (2.5)

1 ),Θ (2.5)
2 ,exp(−Θ (2.5)

3

)
as the lower bound. The solid lines represent the solutions using

the MLEs of (ν1,ν2,λ ). Our model assumes the media does not grow, so the media area is constant in
time, as seen in Figs. 6(b) and 8(b).

Our numerical investigations suggest that determining the best-fit triple (ν1,ν2,λ ) is a fairly ill-
conditioned problem. Although the inference of Θ1 seems to be well-conditioned, large changes in Θ2
and Θ3 only cause small changes in χ2. We found that when the supports of our prior distributions were
too large, the Metropolis-Hastings algorithm converged extremely slowly. Therefore, using the results
of fmincon.m as a guide, we had to constrain the admissible values of θi (sometimes severely) in order
to produce smooth distributions within a reasonable amount of time: see Figs. 6(c-e) and Figs. 8(c-e).

The MLEs for ν1 and ν2 for both the rabbit and rodent data satisfy ν2 ≫ ν1, suggesting that growth of
the intima is primarily driven by PDGF rather than a response to deviations from a homeostatic stress.
Also, ν1 and ν2 change drastically between the two data sets. This is not too surprising because in
addition to these parameters being organism-dependent, both ν1 and ν2 scale with τ (the total duration
of the experiment) through eq. (3.18); and the rat experiments in Clowes et al. (1983) took roughly
twice as long as the rabbit experiments in Stadius et al. (1992).

We find that the best-fit values of ν1 and ν2 are very sensitive to the initial intima thickness. The
intimas of rats and rabbits do not normally contain any smooth muscle cells, unlike their human counter-
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FIG. 8. (a,b) Intima and media areas of Sprague-Dawley rats taken from Clowes et al. (1983) along with model prediction using
best-fit parameters (ν1,ν2,λ ) = (0.12,56.8,0.69) and credible intervals found using the Metropolis-Hastings (MH) algorithm.
Intima stiffness is µ1 = 20 kPa and all other parameters are taken from Table 2. (c,d,e) Marginal distributions PΘ1 , PΘ2 and PΘ3
with 20-bin resolution are used to calculate maximum likelihood estimates and credible intervals. The 2.5 and 97.5 percentiles
for Θ1, Θ2 and Θ3 are (1.91,2.19), (50.3,59.8) and (0.03,0.97) respectively. The dashed error-envelope in (a) corresponds to
intima area development when (ν1,ν2,λ ) = (0.15,50.8,0.96) for the lower bound and (0.11,59.7,0.39) for the upper bound. The
MH parameters are numtrials = 223,000 samples, initial guess θ (0) = [2.0326,56.6247,0.5273], (ℓ1, ℓ2) = (1.9,2.2), (ℓ3, ℓ4) =
(50,60) and (ℓ5, ℓ6) = (0,1). Random walk stepsizes are (σ1,σ2,σ3) = (0.015,0.5,0.05), and the experimental error is estimated
from the error bars in Clowes et al. (1983) as ∆ = 0.05 mm2.
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FIG. 9. Growth of a rodent artery with parameters (ν1,ν2,λ ) = (0.12,56.8,0.69) corresponding to the best fit (thick solid) curve in
Figure 8(a). (a) Wall boundaries a(t), b(t), c(t) and d(t) as functions of time t. Final time t = 1 corresponds to t̂ = 14 weeks. Note
the rapid expansion of intima thickness b−a. (b)-(f) Radial stress, hoop stress, elastic stretch, growth function and dimensionless
growth rate (see eq. (3.17)) are indicated at t = 0,0.4,0.8 and 1.0.

parts (Newby and Zaltsman, 1999): their intimas essentially consist of a single layer of endothelial cells,
with B̂− Â smaller than any other lengthscale in our model. Ideally, we would like to take B̂− Â → 0.
However, our model must be initialized with B−A > 0 because B−A = 0 ⇒ b(t)−a(t) = 0 for t > 0.
The growth law (2.26) assumes that a material element in the intima grows exponentially in the ab-
sence of geometric constraints. It is therefore not surprising that the best-fit values for ν1 and ν2 are
extremely sensitive to B−A. One way to “regularize” the model is to include the effect of cell-migration
from the media (Fok, 2012) at early times, which would allow positive intima thickness for t > 0 even
when B−A = 0. Interestingly, the experiments in Clowes et al. (1983) suggest that smooth muscle cell
migration and proliferation are dominant in the early stages of the experiment while connective tissue
synthesis is dominant in the later stages.

Figures 7 and 9 show wall evolutions, stress profiles, elastic stretches and growth-related functions
for the best-fit parameters determined in Figs. 6 and 8. In both sets of experiments, there is a rapid
buildup of hoop stress in the interface between the intima and media. We also see that the intimal
expansion in the rabbit and rat experiments are qualitatively different. In the rabbit experiments, all 3
vessel wall layers dilate over time and there is a gradual increase in lumen area over the course of the
experiment. On the other hand, in the rat experiments, our prediction is that the outer two layers quickly
find their steady states and the lumen area decreases over time. For a given parameter set, whether a(t)
increases or decreases in time is an interesting (and open) question. The monotonicity of a(t) is closely
related to the important phenomenon of Glagov remodeling which we discuss in the next section.

The experimental measurements in Clowes et al. (1983) and Stadius et al. (1992) consist of intima
areas of blood vessels extracted from animals sacrificed at different times. One could also quantify
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intima growth by measuring the mean intima radius, (e.g. in an elliptic cross section, take the average of
the semi-major and semi-minor axes). However, we strongly advocate the area method for two reasons.
First, the extracted arterial cross sections are not exactly circular, so characterizing the growth by a
radius is artificial and unnecessary. Second, when arteries are extracted and depressurized, their mean
radii decrease: the radii for the lumen and internal/external laminas in a live animal are larger than those
in the extracted cross sections. On the other hand, because the intima is largely incompressible, its area
is independent of P, so ex-vivo measurements of the area should be identical to the in-vivo ones. From
the modeling perspective, this is convenient since we do not have to mathematically “unload” our vessel
cross section in order to compare with predictions from ex-vivo data.

5.3.2 Glagov Remodeling As noted in Section 2.2.3, the material properties of the intima can vary
greatly. Here, we explore the effect of varying the intima stiffness µ1, keeping all other parameters fixed:
see Fig. 10. We find that the relative stiffness of the intima to the other layers determines whether the
intima initially grows inward or outward. When µ1 is small, a(t) initially decreases because the outer
layers are stiffer. On the other hand, when µ1 is large, a(t) initially increases because the media and
adventitia are compliant relative to the intima. For large strains, the presence of collagen fibers in the
media and adventitia ensure that these layers cannot dilate indefinitely.

When vessels undergo remodeling because of the presence of atherosclerotic plaque, they experience
first an outward remodeling followed by inward remodeling. That is, vessel changes consist of two
phases: first an outward expansion of the vessel wall accompanied by a slight increase in lumen area,
followed by rapid constriction characterized by a decrease in lumen area. The second phase starts after
the plaque burden exceeds about 40%. These changes in the vessel were first observed by Glagov et al.
(1987) and are known as Glagov remodeling. Glagov quantified vessel remodeling by studying the
lumen area L and the stenosis s of human coronary arteries:

L(t) = πa2(t), (5.8)

s(t) = 1− a2(t)
b2(t)

=
internal elastic lamina area− lumen area

internal elastic lamina area
. (5.9)

As an artery remodels and becomes more diseased, both L and s change. Glagov remodeling is char-
acterized by a curve L(s) that is increasing for small s and decreasing for larger values of s. Stated
mathematically, Glagov phenomenon occurs if there is a s∗ ∈ (0,1) such that L′(s∗) = 0 and L′′(s∗)< 0.
For human coronary arteries compromised by atherosclerosis, it appears that s∗ ≈ 0.4. We find that as
intima stiffness increases in our model, a local maximum in L(s) emerges for sufficiently large µ1: see
the insets in Fig. 10. Generally we find that s∗ is sensitive to the reference radii Â, B̂, Ĉ and D̂ and
insensitive to wall material properties. Interestingly, we also find that for long enough times, stenosis
can decrease over time. Specifically, after about 5 years, a(t) increases while b(t), c(t) and d(t) re-
main approximately constant. We defer an analysis of this nonlinear phenomenon and a more detailed
understanding of Glagov remodeling to a later publication.

5.3.3 Effect of cytokine on IMT The concentration of PDGF throughout the intima is controlled
by the dimensionless decay rate, λ , and the growth constant, ν2. In the non-dimensionalized model
λ =

√
kL2/Dc, where Dc is the PDGF diffusivity, k is the PDGF degradation rate and L is the initial

IMT. If λ ≫ 1, then the degradation rate is large compared to the diffusion rate, and PDGF is at a high
concentration only near the lumen. Therefore, growth is also localized near the lumen. If λ ≪ 1, then
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FIG. 10. Increase in intima thickness of an artery after injury to the endothelium for different intima stiffnesses µ1. Glagov
remodeling emerges for sufficiently large µ1. (a) µ1 = 10 kPa, (b) µ1 = 11 kPa, (c) µ1 = 12 kPa, (d) µ1 = 15 kPa. Common
parameters are (ν1,ν2,λ ) = (0.01,30,0.01), τ = 15 years, µ2 = 8 kPa, η2 = 4 kPa, β2 = 0.83, φ2 = 50π/180, µ3 = 0.2 kPa,
η3 = 4 kPa, β3 = 0.71, φ3 = 62π/180, P = 100 mmHg, Â = 2 mm, B̂ = 2.5 mm, Ĉ = 4 mm, D̂ = 5 mm. Wall radii a(t), b(t),
c(t) and d(t) are represented by thick solid, dashed, thin solid and dotted lines respectively.
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the degradation rate is small compared to the diffusion rate, and PDGF is present at high concentra-
tions throughout the entire intima and the entire intima grows. We point out that the decay length of
PDGF λ−1 must be large compared to the intima thickness b(t)− a(t) for the entire intima to grow
(equivalently:

√
Dc/k ≫ b̂− â). This is a dynamic condition which may be violated for later times.

Even though λ ≪ 1, the intima can grow thick enough so that there is significant spatial decay in the
cytokine. Different layers of the intima will then experience different growth rates. The evolution of
IMT for different λ is shown in Fig. 11(a). For small λ , all tissue in the intima has access to high levels
of PDGF and the tissue initially grows rapidly. For large λ , the PDGF is degraded at a high rate and the
diffusion constant is small which results in limited growth. This plot confirms our belief that in order
for substantial IMT growth to occur (as seen in Figs. 6 and 8), we require λ ≪ 1.
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FIG. 11. (a) IMT evolution for different λ . Parameters are ν1 = 0.018, ν2 = 20, µ1 = 20 kPa and other parameter values are taken
from Table 1. (b) IMT evolution for different ν2. Parameters are ν1 = 0.018, λ = 0.348 and µ1 = 20 kPa. Other parameter values
are taken from Table 1.

The dimensionless parameter, ν2, is a measure of how much the growth is modified by the presence
of cytokine. A larger value of ν2 means that the growth rate is larger for a given concentration of PDGF.
The general effect of increasing ν2 is to induce the intima to grow more rapidly. For all ν2 > 0, the IMT
eventually saturates, but increasing ν2 increases the saturating level. See Fig. 11(b).

6. Conclusions

In this paper we presented a model for intimal hyperplasia that typically occurs after angioplasty in
humans or in animal models of atherosclerosis. The model makes predictions for the evolution of in-
tima, media and adventitia thicknesses. Related quantities such as the important intima-media thickness
(IMT) can be quickly inferred. Our model is based on the theory of hyperelastic materials and predicts
the stress distribution within concentric lesions. The distribution of cytokines within the intima can re-
sult in uniform or differential growth. The result is a rich set of dynamic behaviors e.g. remodeling that
switches from inward-to-outward or outward-to-inward, IMT growth that depends on cytokine half-life
and material properties of the vessel wall; and unintuitive results such as decreasing IMT and stenosis
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under positive growth. Importantly, our mathematical model is the first that we know of that exhibits
the phenomenon of Glagov remodeling, where the lumen expands, or remains roughly constant, before
constricting as the intima thickens.

Our model predicts that for the intima growth shown in Figs. 6 and 8, growth must occur uniformly
throughout the intima. Intramural flow may also be responsible for enhanced transport and distribution
of PDGF giving rise to uniform cytokine distributions. If our description of the layer properties of the
vessel are correct and the intima and media are hyperelastic, our model predicts that homeostatic control
of the growth is very weak (ν1 ≪ ν2): if there is a “preferred” distribution of stress in the artery, the local
growth is not strongly affected by it. Instead, our results suggest that intimal growth is driven primarily
by cytokines which persistently increase the stresses in the intima and media.

In our model we assume zero traction on the outer boundary. In human carotid arteries there is
likely a reactive radial stress on the outer boundary due to the perivascular tissue pushing back on
the vessel as the tissue grows outward. The form of the outermost boundary condition is still unclear
at present and there has yet to be any agreement on the best way to model this aspect of the in-vivo
mechanics. Humphrey and Na (2002) proposed a simple exponential form for the perivascular reactive
radial stress but this form was not based on data. Preliminary results of including this exponential
boundary condition in our model produced the same qualitative behavior as we observed when using a
zero traction boundary condition.

While the medical focus of our model was on GVD in humans and atherosclerotic lesions in rab-
bits and rodents, we believe our framework could be applicable to other conditions too. For exam-
ple, aneurysms and hypertension both involve substantial remodeling-in-time of blood vessels. Recent
research on asthma by Ronzani et al. (2014) suggests that remodeling in the epithelial layer of the
respiratory tract can also arise from inflammation. In this system, epithelial cells release cytokines
such as thymic stromal lymphopoietin (TSLP) and granulocyte macrophage colony stimulating factor
(GM-CSF), in much the same way that platelets release PDGF on the endothelial surface in our model.
However, one should take precautions about using this model to describe human atherosclerosis. Ad-
vanced atherosclerotic lesions are eccentric and highly heterogeneous containing (for example) necrotic
cores and extensive calcification. Such lesions would require a more general, non-axisymmetric model
whose material properties can change temporally and spatially. The simple geometry assumed in our
model means that our predictions are limited to lesions that are approximately concentric.

A natural extension to our current work is to use our model to understand Glagov remodeling in
terms of competing stiffnesses of different vessel wall layers. The fact that the critical stenosis (beyond
which lumen area rapidly decreases) is strongly dependent on vessel geometry but only weakly depen-
dent on parameters in the strain energy function could be proved mathematically. Another extension is
to follow Ben Amar et al. (2011) and perform linear stability analysis on the growing concentric lesion
to see if it is stable. This calculation may help us understand why many atherosclerotic lesions are ec-
centric. Our model can also be extended by allowing the growth function to depend on several chemical
species which could react with each other through mass-action or Michaelis-Menten kinetics. Many of
the main biochemical pathways that lead to smooth muscle cell proliferation, for example, have already
been established and it should be possible to include these reactions in our model to see what effect they
have on intimal growth.

In short, we believe our model exhibits many interesting mathematical features and may be useful
for describing several medical conditions that involve vessel remodeling. We hope that it will stimulate
further quantitative study of such conditions.
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A. Numerical Procedure

The primary quantities of interest are the time-evolution of the wall radii a, b, c and d and the stress
distributions Trr(R) and Tθθ (R). Recall that all quantities depend on time t solely through the growth
function g(r, t). Because our model’s dependence on t is purely algebraic (there are no t-derivatives in
any of the equations), we often omit explicit dependence on t in the dependent variables when presenting
the equations.

Here we describe our numerical method to compute these quantities at a a sequence of time points
t ∈ {0 ≡ t0 < t1 < t2 < .. . < tm}. The definitions of frequently used functions Q1, Q2 and Q3 are given
in eqs. (2.18)-(2.20).

1. Suppose t = 0. There is no growth (g = 1) and no release of cytokine. Deformation of the vessel
wall arises only from the blood pressure. With a, b and c regarded as the unknowns, solve the
nonlinear system of equations

∫ B

A

Q1[α(R;a,b,c)]dR
R

+
∫ C

B

Q2[α(R;a,b,c)]dR
R

+
∫ D

C

Q3[α(R;a,b,c)]dR
R

=
P
η2

, (A.1)

r(B) = b, (A.2)
r(C) = c, (A.3)

where r(R) =
(
a2 +R2 −A2

)1/2 and let

α(R;a,b,c) =



(
a2 +R2 −A2

)1/2

R
, A 6 R 6 B,

(
b2 +R2 −B2

)1/2

R
, B < R 6C,

(
c2 +R2 −C2

)1/2

R
, C < R 6 D.

(A.4)

This yields the wall positions a(0), b(0), c(0). The outermost boundary d(0) immmediately
follows from d(0) = r(D).

2. Let

Trr(R) =



− P
η2

+
∫ R

A
Q1[α(R′)]

dR′

R′ , A 6 R 6 B,

−
∫ D

C
Q3[α(R′)]

dR′

R′ −
∫ C

R
Q2[α(R′)]

dR′

R′ , B < R 6C,

−
∫ D

R
Q3[α(R′)]

dR′

R′ , C < R 6 D,

(A.5)
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Tθθ (R) = T̄θθ (R) =



α2(R)Q1[α(R)]+Trr(R), A 6 R 6 B,

α2(R)Q2[α(R)]+Trr(R), B < R 6C,

α2(R)Q3[α(R)]+Trr(R), C < R 6 D.

(A.6)

3. For i = 1,2, . . . ,m, find Tθθ (R, ti), r(R, ti), a(ti), b(ti), c(ti), d(ti) that satisfy

M(Tθθ ,r,a,b,c,d, ti) = 0, (A.7)

using a Newton iteration. The function M is defined below. Use Tθθ (R, ti−1), r(R, ti−1), a(ti−1),
b(ti−1), c(ti−1), d(ti−1) as starting guesses to the iteration. In MATLAB, the Newton iteration can
be implemented using fsolve and all integrals are discretized using a compound trapezium rule
with N = 12 abscissae.

The function M is defined as

M =


F1(R)
F2(R)

F3
F4
F5
F6

=



T (new)
θθ (R)−Tθθ (R)
r(new)(R)− r(R)∫ B

A

Q1[α(R)]dR
R︸ ︷︷ ︸

F31

+
∫ C

B

Q2[α(R)]dR
R︸ ︷︷ ︸

F32

+
∫ D

C

Q3[α(R)]dR
R︸ ︷︷ ︸

F33

− P
η2

,

r(new)(D)−d
r(new)(C)− c
r(new)(B)−b


, (A.8)
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where

r(new)(R) =



(
a2 +2

∫ R

A
g2(R′)R′dR′

)1/2

, A 6 R 6 B,

(
b2 +R2 −B2)1/2

, B < R 6C,

(
c2 +R2 −C2)1/2

, C < R 6 D.

(A.9)

g(R) = exp
[ν2t

2
· K1(λb)I0(λ r(R))+ I1(λb)K0(λ r(R))

I1(λb)K0(λa)+ I0(λa)K1(λb)

]
×

exp
[

ν1 (Tθθ (R)− T̄θθ (R)) t
2

]
, (A.10)

α(R) =


r(new)(R)

Rg(R)
, A 6 R 6 B,

r(new)(R)
R

, B < R 6 D.

(A.11)

T (new)
rr (R) =



− P
η2

+
∫ R

A
Q1[α(R′)]

dR′

R′ , A 6 R 6 B,

−
∫ D

C
Q3[α(R′)]

dR′

R′ −
∫ C

R
Q2[α(R′)]

dR′

R′ , B < R 6C,

−
∫ D

R
Q3[α(R′)]

dR′

R′ , C < R 6 D.

(A.12)

T (new)
θθ (R) =



α2(R)Q1[α(R)]+T (new)
rr (R), A 6 R 6 B,

α2(R)Q2[α(R)]+T (new)
rr (R), B < R 6C,

α2(R)Q3[α(R)]+T (new)
rr (R), C < R 6 D,

(A.13)

Note that the function M(Tθθ ,r,a,b,c,d, t) takes t, Tθθ (R, t), r(R, t), a(t), b(t), c(t), d(t) as inputs and
takes A, B, C, D, ν1, ν2, λ , P/η2, µ1/η2, µ2/η2, µ3/η2, η1/η2, η3/η2 and T̄θθ (R) as parameters. While
F3, F4, F5 and F6 are functions of t, F1 and F2 are functions of both R and t.
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B. Small time analytic solution

We seek a small time asymptotic solution when the internal pressure P = 0 and decay constant λ = 0.
For a given time t, the solution to the full nonlinear problem satisfies

F1 [α1(R,Tθθ (R),a, t),Tθθ (R)] = 0,
F2 [Tθθ (R),r(R),a, t] = 0,

F31 [α1(R,Tθθ (R),a, t)]+F32 [α2(R,b)]+F33 [α3(R,c)] = 0,
F4[c,d] = 0,
F5[b,c] = 0,

F6[Tθθ (R),a,b, t] = 0,

where

F1[α1,Tθθ ] = α2Q1[α]+
∫ R

A

dR′

R′ Q1[α ]−Tθθ ,

F2[Tθθ ,r,a, t] =

(
a2 +2eν2t

∫ R

A
eν1Tθθ tR′dR′

)1/2

− r,

F31[α ] =
∫ B

A

dR
R

Q1[α ],

F32[α ] =
∫ C

B

dR
R

Q2[α],

F33[α ] =
∫ D

C

dR
R

Q3[α],

F4[c,d] = (c2 +D2 −C2)1/2 −d,

F5[b,c] = (b2 +C2 −B2)1/2 − c,

F6[Tθθ ,a,b, t] =

(
a2 +2eν2t

∫ B

A
eν1Tθθ tR′dR′

)1/2

−b,

and

α1(R,Tθθ ,a, t) =

(
a2 + eν2t ∫ R

A eν1Tθθ (R′)tR′dR′
)1/2

Reν2t/2+ν1Tθθ (R)t/2 , when A 6 R 6 B

α2(R,b) =

(
b2 +R2 −B2

)1/2

R
, when B < R 6C

α3(R,c) =

(
c2 +R2 −C2

)1/2

R
, when C < R 6 D.
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Linearizing about the base state t = 0, a = A, b = B, c =C, d = D, Tθθ (R) = 0, r(R) = R, the first order
variations satisfy the linear system[

δF1

δα1

δα1

δTθθ
+

∂F1

∂Tθθ

]
δTθθ +

[
δF1

δα1

∂α1

∂a

]
δa = −

[
δF1

δα1

∂α1

∂ t

]
δ t,[

δF2

δTθθ

]
δTθθ +

[
∂F2

∂a

]
δa+

[
δF2

δ r

]
δ r = −

[
∂F2

∂ t

]
δ t,[

δF31

δα1

δα1

δTθθ

]
δTθθ +

[
δF31

δα1

∂α1

∂a

]
δa+

[
δF31

δα1

∂α1

∂b

]
δb+

[
δF31

δα1

∂α1

∂c

]
δc = −

[
δF31

δα1

∂α1

∂ t

]
δ t,[

∂F4

∂c

]
δc+

[
∂F4

∂d

]
δd = 0, (B.1)[

∂F5

∂b

]
δb+

[
∂F5

∂c

]
δc = 0,[

δF6

δTθθ

]
δTθθ +

[
δF6

δa

]
δa+

[
∂F6

∂b

]
δb = −

[
∂F6

∂ t

]
δ t,

where square parentheses indicate that the term is to be evaluated at the O(1) base solution. Note that
terms such as

[
δF1
δα1

]
are actually linearized integral operators and α(R)≡ 1 at the base solution.

The terms in square parentheses are:[
δF1
δα1

]
(·) = Q′

1[1]
(

1+
∫ R

A
dR′
R′

)
(·),

[
δα1
δTθθ

]
= 0,

[
δF1

δTθθ

]
=−1,

[
∂α1
∂a

]
= A

R2 ,[
∂α1
∂ t

]
=−A2ν2

2R2 ,
[

δF2
δTθθ

]
= 0,

[
δF2
δ r

]
=−1,

[
∂F2
∂a

]
= A

R ,[
∂F2
∂ t

]
= ν2(R2−A2)

2R ,
[

δF31
δα1

]
= Q′

1[1]
∫ B

A
dR′
R′ (·),

[
δF32
δα2

]
= Q′

2[1]
∫C

B
dR′
R′ (·),

[
∂α2
∂b

]
= B

R2 ,[
δF33
δα3

]
= Q′

3[1]
∫ D

C
dR′
R′ (·),

[
∂α3
∂c

]
= C

R2 ,
[

∂F4
∂c

]
= C

D ,
[

∂F4
∂d

]
=−1,[

∂F5
∂b

]
= B

C ,
[

∂F5
∂c

]
=−1,

[
δF6

δTθθ

]
= 0,

[
∂F6
∂a

]
= A

B ,[
∂F6
∂b

]
=−1,

[
∂F6
∂ t

]
= ν2(B2−A2)

2B .

(B.2)
Since Qk[1] = 0 for k = 1,2,3, solving eq. (B.1) yields the solutions (4.1).

C. Metropolis-Hastings Algorithm for Estimating Credible Intervals

1. Find the minimum of χ2 (given by Eq. (5.7)) using a routine such as Matlab’s fmincon.m. Let
the minimizer of χ2 be θ (0) ∈ R3.

2. Set stepsizes σ1,σ2,σ3 and initial guess θ (0) ≡ (θ (0)
1 ,θ (0)

2 ,θ (0)
3 ).

3. For i = 0,1, . . . , numtrials (a specified integer):

4. Generate random increments δθ ∼×(σ1N(0,1),σ2N(0,1),σ3N(0,1))
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5. Let θ (temp) = θ (i)+δθ .

6. Compute rproposed = P(ω |θ (temp))P(θ (temp)) and rcurrent = P(ω|θ (i))P(θ (i)).

7. Let

θ (i+1) =

{
θ (temp) with probability p = min(1,rproposed/rcurrent),

θ (i) with probability 1− p.
(C.1)

The algorithm produces a sequence {θ (i)}, i = 0,1, . . . which are guaranteed to be samples from the
posterior distribution (5.5). Because the priors for Θ1, Θ2 and Θ3 are compactly supported, θ (i) ≡
(θ (i)

1 ,θ (i)
2 ,θ (i)

3 ) can never leave the domain [ℓ1, ℓ2]× [ℓ3, ℓ4]× [ℓ5, ℓ6]. In order to perform the large
number of trials required for convergence, we ran the algorithm in parallel on a large cluster with each
set of runs initialized with θ (0) and aggregated the results.


